Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 459: 132106, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37506648

ABSTRACT

A shift beyond conventional environmental remediation to a sustainable pollutant upgrading conversion is extremely desirable due to the rising demand for resources and widespread chemical contamination. Electrochemical reduction processes (ERPs) have drawn considerable attention in recent years in the fields of oxyanion reduction, metal recovery, detoxification and high-value conversion of halogenated organics and benzenes. ERPs also have the potential to address the inherent limitations of conventional chemical reduction technologies in terms of hydrogen and noble metal requirements. Fundamentally, mechanisms of ERPs can be categorized into three main pathways: direct electron transfer, atomic hydrogen mediation, and electrode redox pairs. Furthermore, this review consolidates state-of-the-art non-noble metal cathodes and their performance comparable to noble metals (e.g., Pd, Pt) in electrochemical reduction of inorganic/organic pollutants. To overview the research trends of ERPs, we innovatively sort out the relationship between the electrochemical reduction rate, the charge of the pollutant, and the number of electron transfers based on the statistical analysis. And we propose potential countermeasures of pulsed electrocatalysis and flow mode enhancement for the bottlenecks in electron injection and mass transfer for electronegative pollutant reduction. We conclude by discussing the gaps in the scientific and engineering level of ERPs, and envisage that ERPs can be a low-carbon pathway for industrial wastewater detoxification and valorization.

2.
Sci Total Environ ; 866: 161444, 2023 Mar 25.
Article in English | MEDLINE | ID: mdl-36621470

ABSTRACT

Excessive nitrate has been a critical issue in the water environment, originating from the burning of fossil fuels, inefficient use of nitrogen fertilizers, and discharge of domestic and industrial wastewater. Among the effective treatments for nitrate reduction, electrocatalysis has become an advanced technique because it uses electrons as green reducing agents and can achieve high selectivity through cathode potential control. The effectiveness of electrocatalytic nitrate reduction (NO3RR) mainly lies in the electrocatalyst. Iron-based catalysts have the advantages of high activity and low cost, which are well-used in the field of electrocatalytic nitrates. A comprehensive overview of the electrocatalytic mechanism and the iron-based materials for NO3RR are given in terms of monometallic iron-based materials as well as bimetallic and oxide iron-based materials. A detailed introduction to NO3RR on zero valent iron, single-atom iron catalysts, and Cu/Fe-based bimetallic electrocatalysts are provided, as they are essential for the improvement of NO3RR performance. Finally, the advantages of iron-based materials for NO3RR and the problems in current applications are summarized, and the development prospects of efficient iron-based catalysts are proposed.

3.
Environ Sci Pollut Res Int ; 30(7): 19427-19438, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36241830

ABSTRACT

Simultaneous and highly efficient removal of heavy metal cations and oxyanions is significant for both water and soil remediation, but it remains a major challenge due to the complexity. In this work, a novel hybrid of α-FeOOH incorporated carboxylated cellulose nanocrystal (Fe/CNC) is synthesized via a hydrothermal process, which shows improved α-FeOOH dispersion and heavy metal removal capacity. In single adsorbate system, maximum adsorption capacities toward Pb(II), Cd(II), and As(V) by Fe/CNC reach 126.06, 53.07, and 15.80 mg g-1, respectively, and the Fe leaching is much lower than that of α-FeOOH. In binary and ternary adsorption systems, simultaneous removal of Pb(II), Cd(II), and As(V) is proved, and the competition and synergy coexist among heavy metals. FTIR and XPS spectra have revealed the synergistic removal mechanism: Pb(II) and Cd(II) are mainly removed by surface complexation with oxygen-containing functional groups on C-CNC and α-FeOOH, and precipitation on the surface of α-FeOOH, while ligand exchange with Fe-OH is responsible for As(V) removal. The soil incubation experiments show that exchangeable and carbonate-bound Pb, Cd, and As are transformed into more stable forms in contaminated soil containing Fe/CNC composites. This work provides a novel composite material for remediation of heavy metal-contaminated environments.


Subject(s)
Metals, Heavy , Nanoparticles , Cadmium , Lead , Metals, Heavy/analysis , Cellulose , Soil , Cations , Adsorption
4.
Nanomaterials (Basel) ; 12(22)2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36432330

ABSTRACT

Antibiotics have been a primary environmental concern due to their widespread dispersion, harmful bioaccumulation, and resistance to mineralization. Unfortunately, typical processes in wastewater treatment plants are insufficient for complete antibiotic removal, and their derivatives in effluent can pose a threat to human health and aquatic communities. Adsorption and photocatalysis are proven to be the most commonly used and promising tertiary treatment methods. Carbon-based materials, especially those based on graphene, carbon nanotube, biochar, and hierarchical porous carbon, have attracted much attention in antibiotic removal as green adsorbents and photocatalysts because of their availability, unique pore structures, and superior physicochemical properties. This review provides an overview of the characteristics of the four most commonly used carbonaceous materials and their applications in antibiotic removal via adsorption and photodegradation, and the preparation of carbonaceous materials and remediation properties regarding target contaminants are clarified. Meanwhile, the fundamental adsorption and photodegradation mechanisms and influencing factors are summarized. Finally, existing problems and future research needs are put forward. This work is expected to inspire subsequent research in carbon-based adsorbent and photocatalyst design, particularly for antibiotics removal.

SELECTION OF CITATIONS
SEARCH DETAIL
...