Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 85
Filter
1.
Water Environ Res ; 96(2): e10996, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38369707

ABSTRACT

In the present study, magnetic coagulation was used to treat dredged water and the response surface method was used to optimize process parameters. The dissolved organic matter (DOM) removal characteristics were characterized by three-dimensional fluorescence spectrometry and ultra-high resolution mass spectrometry. During the magnetic coagulation process, the suspended solids (SS) removal rate increased initially and then decreased under conditions of increasing magnetic powder dosage and stirring rate. After magnetic coagulation and precipitation for 20 min, the contents of SS, ammonia nitrogen, chemical oxygen demand, and total phosphorus in the treated dredged water met the requirements of the discharge standard (GB8978-1996, China). Three-dimensional fluorescence results showed that magnetic coagulation selectively removed fulvic acids and humic acid substances. After magnetic coagulation with precipitation for 10 min and 20 min, the total relative content of lignins, tannins, proteins, lipids, aminosugars, unsaturated hydrocarbons, condensed aromatic structures, and carbohydrates decreased by 26.3% and 39.4%, respectively. After magnetic coagulation, the distribution range of small molecule DOM shifted to the low H/C and high O/C regions. This study provides a novel perspective for studies on the removal of DOM in dredged water by magnetic coagulation. PRACTITIONER POINTS: SS and DOM removal were significantly enhanced by the use of magnetic coagulation. SS removal efficiency was affected by stirring rate and magnetic powder dosage. Magnetic coagulation selectively removed fulvic acids and humic acid substances. DOM molecule shifted to low H/C and high O/C regions after magnetic coagulation.


Subject(s)
Water Purification , Water , Dissolved Organic Matter , Humic Substances/analysis , Powders , Magnetic Phenomena , Water Purification/methods
2.
Bioresour Technol ; 393: 130116, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38016583

ABSTRACT

Hydrogenotrophic denitrification, an environment-friendly process for organic-free influents, is limited due to poor hydrogen mass transfer efficiency and significant pH fluctuations. In this study, we manipulated the carbon dioxide-to-hydrogen ratio to improve hydrogenotrophic denitrification. When carbon dioxide-to-hydrogen ratio was 1:1 (carbon dioxide, 200 ml: hydrogen, 200 ml), the hydrogen utilization and denitrification rates were 2.4 times and 3.0 times that when carbon dioxide-to-hydrogen ratio was 0:1 (carbon dioxide, 0 ml: hydrogen, 200 ml), respectively. The pH fluctuation decreased from 3.1±0.3 to 0.2±0.1. Furthermore, the hydrogenotrophic denitrification, acetoclastic denitrification, homoacetogenic, and electron transfer activities of the sludge were improved. A high carbon dioxide-to-hydrogen ratio augmented the acid-producing and heterotrophic denitrifying microorganism populations. By maintaining a high carbon dioxide-to-hydrogen ratio, the dominant hydrogenotrophic autotrophic denitrification pathway was transformed into a homoacetogenesis-heterotrophic denitrification pathway, thereby achieving higher hydrogen utilization and denitrification rates.


Subject(s)
Carbon Dioxide , Denitrification , Nitrates/metabolism , Hydrogen , Bioreactors , Autotrophic Processes , Nitrogen/metabolism
3.
Int J Oncol ; 63(6)2023 Dec.
Article in English | MEDLINE | ID: mdl-37888731

ABSTRACT

Subsequently to the publication of the above paper, an interested reader drew to the authors' attention that, for the scratch wound assay experiments shown in Fig. 1 on p. 2413, the panels showing the '0 h' experiments for the respective incubations with VEGF or BC001 were apparently identical. The authors were able to re­examine their original data files, and realized that this figure had been inadverently assembled incorrectly. The revised version of Fig. 1, containing the correct data for the '0 h / BC001' panel, is shown below. Note that the revisions made to this figure do not affect the overall conclusions reported in the paper. The authors are grateful to the Editor of International Journal of Oncology for allowing them the opportunity to publish this Corrigendum, and apologize to the readership for any inconvenience caused. [International Journal of Oncology 45: 2411­2420, 2014; DOI: 10.3892/ijo.2014.2690].

4.
J Hazard Mater ; 459: 132235, 2023 10 05.
Article in English | MEDLINE | ID: mdl-37562349

ABSTRACT

Struvite recovered from wastewater contains high concentration of fecal indicator bacteria (FIB), porcine adenoviruses (PAdV) and antibiotic resistance genes (ARGs), becoming potential resources of these microbial hazards. Understanding the precipitation behavior of pathogenic indicators and ARGs with suspended solids (SS) will provide the possible strategy for the control of co-precipitation. In this study, SS was divided into high-density SS (separated by centrifugation) and low-density SS (further separated by filtration), and the role of SS on the co-precipitation of FIB, PAdV and ARGs was investigated. The distribution analysis showed that 35.5-73.0% FIB, 79.6% PAdV and 64.5-94.8% ARGs existed in high-density SS, while the corresponding values were 26.9-64.4%, 11.7% and 3.5-24.3% in low-density SS. During struvite generation, 82.7-96.9% FIB, 75.5% PAdV and 56.3-86.5% ARGs were co-precipitated into struvite. High-density SS contributed 20.7-68.5% FIB, 63.9% PAdV and 38.7-87.2% ARGs co-precipitation, and the corresponding contribution of low-density SS was 31.4-79.2%, 3.9% and 6.2-54.7%. Moreover, the precipitated SS in struvite obviously decreased inactivation efficiency of FIB and ARGs in drying process. These results provide a potential way to control the co-precipitation and inactivation of FIB, PAdV and ARGs in struvite through removing high-density SS prior to struvite recovery.


Subject(s)
Phosphates , Wastewater , Swine , Animals , Struvite , Phosphates/analysis , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial , Genes, Bacterial
5.
J Hazard Mater ; 455: 131633, 2023 08 05.
Article in English | MEDLINE | ID: mdl-37196443

ABSTRACT

Struvite production can recover ammonia and phosphorous from digested wastewater as fertilizer. During struvite generation, most of the heavy metals was co-precipitated with ammonia and phosphorous into struvite. Understanding the precipitation behavior of heavy metals with suspended solids (SS) might provide the possible strategy for the control of co-precipitation. In this study, the distribution of heavy metals in SS and their role on the co-precipitation during struvite recovery from digested swine wastewater were investigated. The results showed that the concentration of heavy metal (including Mn, Zn, Cu, Ni, Cr, Pb and As) ranged from 0.05 to 17.05 mg/L in the digested swine wastewater. The distribution analysis showed that SS with particles > 50 µm harbored most of individual heavy metal (41.3-55.6%), followed by particles 0.45-50 µm (20.9-43.3%), and SS-removed filtrate (5.2-32.9%). During struvite generation, 56.9-80.3% of individual heavy metal was co-precipitated into struvite. The contributions of SS with particles > 50 µm, 0.45-50 µm, and SS-removed filtrate on the individual heavy metal co-precipitation were 40.9-64.3%, 25.3-48.3% and 1.9-22.9%, respectively. These finding provides potential way for controlling the co-precipitation of heavy metals in struvite.


Subject(s)
Metals, Heavy , Wastewater , Animals , Swine , Struvite , Waste Disposal, Fluid/methods , Ammonia/analysis , Metals, Heavy/analysis , Phosphorus , Phosphates/analysis
6.
Environ Sci Pollut Res Int ; 30(19): 56330-56342, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36917381

ABSTRACT

Microplastics are an emerging pollutant of global concern, and fluorescence staining as an efficient method for small-sized microplastic qualification often undergoes the serious interference from external environments. The key steps affecting the accuracy of fluorescent staining and the corresponding quality assurance measures were rarely known. Therefore, this study took the Nile Red/DAPI co-staining method as an example to explore the key factors affecting its accuracy and effective measures to avoid interference. High background microplastic contamination in typical lab waters (up to 1115 MP/L), glass fiber filter membrane and glassware were identified as dominant factors affecting microplastic quantification. The background microplastics in lab waters mainly originated from the process of water production and storage. A simple filtration process removed 99% of the background microplastic in the lab waters. After burning at 500 °C for 1 h, the microplastic contamination in the filter membrane and glassware was completely eliminated. H2O2 pretreatment and exposure time caused erroneous microplastic size assessment, and were suggested to be set at 48 h and 10 ms, respectively. During the extraction process, the residue in beakers reached ~ 20% and > 50% for 5 µm and 20 µm sized microplastics, respectively, greatly contributing to the microplastic loss. The comprehensive modified measures caused microplastic concentrations in the three typical samples detected by Nile Red/DAPI co-staining method to decrease by 65.7 - 92.2% and to approach the micro-Raman results. This study clarified the reasons for interfering with quantitative microplastics by fluorescent staining and the effective measures to avoid interference, which were conducive to improving the accuracy of quantitative methods of microplastics.


Subject(s)
Microplastics , Water Pollutants, Chemical , Plastics , Hydrogen Peroxide , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Staining and Labeling
7.
Environ Sci Pollut Res Int ; 30(15): 45077-45087, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36701053

ABSTRACT

Anaerobic conversion rate of phenol to methane was low due to its biological toxicity. In this study, the coupling of granular activated carbon (GAC) and exogenous hydrogen (EH) could enhance greatly methane production of phenol anaerobic digestion, and the metagenomic was firstly used to analyze its potential mechanism. The results indicated that a mass of syntrophic acetate-oxidizing bacteria and hydrogen-utilizing methanogens were enriched on the GAC surface, and SAO-HM pathway has become the dominant pathway. The energy transfer analysis implied that the abundance of adenosine triphosphate (ATP) and nicotinamide adenine dinucleotide (NADH) oxidase increased. Furthermore, direct interspecies electron transfer (DIET) was formed by promoting type IV e-pili between Methanobacterium and Syntrophus, thereby improving the interspecies electron transfer efficiency. The dominant SAO-HM pathway was induced and DIET was formed, which was the internal mechanism of the coupling of GAC and EH to enhance anaerobic biotransformation of phenol.


Subject(s)
Microbiota , Phenol , Anaerobiosis , Charcoal , Hydrogen , Phenols , Methane/metabolism , Bioreactors
8.
Int J Nanomedicine ; 18: 209-223, 2023.
Article in English | MEDLINE | ID: mdl-36660339

ABSTRACT

Background: Extracellular vesicles (EVs) are considered a promising drug delivery platform. Naïve EVs face numerous issues that limit their applications, such as fast clearance, hepatic accumulations, and a lack of target-specific tropism. We aimed to explore a series of surface engineering approaches to: 1) reduce the non-specific adhesion of EVs, and 2) improve their enrichment in the target tissue. As a proof-of-concept, we investigated the therapeutic potentials of a multi-modal EVs system carrying a tumor-specific nanobody and the immuno-stimulant interleukin-12 (IL12) using in vivo models of hepatocellular carcinoma. Methods: The major cell adhesion molecule on the HEK293-derived EVs, integrin ß1 (ITGB1), was knocked out (KO) by CRISPR/Cas9-mediated gene editing, followed by deglycosylation to generate ITGB1-Deg EVs for the subsequent pharmacokinetic and biodistribution analyses. ITGB1-Deg EVs were further loaded with glypican-3 (GPC3)-specific nanobody (HN3) and mouse single-chain IL12 (mscIL12) to generate ITGB1-mscIL12+HN3+Deg EVs, for evaluation of tumor tropism and therapeutic potential in a mice model of hepatocellular carcinoma. Results: Removal of ITGB1 led to the broad suppression of integrins on the EVs surface, resulting in a decrease in cellular uptake. Deglycosylation of ITGB1- EVs gave rise to inhibition of the EVs uptake by activated RAW264.7 cells. ITGB1 removal did not significantly alter the pharmacokinetic behaviors of HEK293-EVs, whereas the ITGB1-Deg EVs exhibited enhanced systemic exposure with reduced hepatic accumulation. Loading of HN3 conferred the ITGB1-Deg EVs with tumor-specific tropism for both subcutaneous and metastasized tumors in mice. The ITGB1-mscIL12+HN3+Deg EVs activated mouse splenocytes with high potency. Systemic administration of the EVs with the equivalent dose of 1.5µg/kg of exosomal IL12 achieved satisfactory tumor growth inhibition and good tolerability. Conclusion: The combinatorial approach of EVs surface engineering conferred HEK293-EVs with reduced non-specific clearance and enhanced tumor targeting efficacy, which constituted an efficient delivery platform for critical cancer therapeutics like IL12.


Subject(s)
Carcinoma, Hepatocellular , Extracellular Vesicles , Liver Neoplasms , Humans , Animals , Mice , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/metabolism , Interleukin-12/genetics , HEK293 Cells , Cell Line, Tumor , Liver Neoplasms/therapy , Liver Neoplasms/metabolism , Tissue Distribution , Extracellular Vesicles/metabolism , Glypicans/metabolism
9.
Environ Sci Pollut Res Int ; 30(12): 35023-35033, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36525183

ABSTRACT

As a typical wide band gap photocatalyst, titania (TiO2) cannot use the visible light and has fast recombination rate of photogenerated electron-hole pairs. Simultaneous introduction of erbium ion (Er3+) and graphene oxide (rGO) into TiO2 might overcome these two drawbacks. In this study, Er3+ and rGO were co-doped on TiO2 to synthesize Er3+-rGO/TiO2 photocatalyst through a two-step sol-gel method. Based on the UV-visible diffuse reflectance spectra and photoluminescence spectrum, the introduction of Er3+ and rGO increased the visible light absorption efficiency and enhanced the migration of photogenerated electron. Pure TiO2 has almost no photocatalytic activity for arsanilic acid (p-ASA) degradation under visible light irradiation. However, while doping with 2.0 mol% Er3+ and 10.0 mol% rGO, the p-ASA could be completely degraded within 50 min by the Er3+-rGO/TiO2 photocatalyst under visible light irradiation, and most of produced inorganic arsenic was in situ removed by adsorption from the solution. The reactive oxygen species (ROS) reacting with p-ASA was determined and superoxide radical (O2•-) and singlet oxygen (1O2) were the dominant ROS for the oxidation of p-ASA and arsenite. This work provides an approach of introducing Er3+ and rGO to enhance the visible light photocatalytic efficiency of TiO2.


Subject(s)
Arsanilic Acid , Graphite , Reactive Oxygen Species
10.
Bioresour Technol ; 365: 128155, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36272682

ABSTRACT

High salinity in phenolic wastewater inhibited anaerobes' metabolic activity, thereby affecting the anaerobic biotransformation of phenol. In this study, granular activated carbon (GAC) coupled with exogenous hydrogen (H2) was used to enhance the anaerobic digestion of phenol. The GAC/H2 group's accumulative methane production, coenzyme F420 concentration, and interspecies electron transfer system activity increased by 24 %, 53 %, and 16 %, respectively, compared with the control group. In the floc sludge of the GAC/H2 group, the relative abundance of syntrophic acetate-oxidizing bacteria such as Syntrophus and Syntrophorhabdus were 18.7 % and 1.1 % at genus level, respectively, which were around 93.5 and 7.5 times of that of the controlgroup. Moreover, Acinetobacter (77.6 %), Methanobacterium (44.0 %), and Methanosarcina (34.2 %) were significantly enriched on the GAC surface in GAC/H2 group. Therefore, the coupling of GAC and H2 provided a novel attempt at anaerobic digestion of hypersaline phenolic wastewater via syntrophic acetate oxidation and hydrogenotrophic methanogenesis pathway.


Subject(s)
Charcoal , Wastewater , Anaerobiosis , Methane/metabolism , Hydrogen , Acetates , Oxidation-Reduction , Phenol , Bioreactors
11.
J Hazard Mater ; 440: 129784, 2022 10 15.
Article in English | MEDLINE | ID: mdl-36029735

ABSTRACT

Microplastic-derived dissolved organic matter (MP-DOM) is ubiquitous in water environment and exhibits photosensitivity. However, little is known about the effects of MP-DOM on the photodegradation of organic micropollutants in natural water. In this study, we investigated the effect of MP-DOM derived from two typical plastics, i.e., polystyrene (PS), and polyethylene (PE), on the photodegradation of a typical organic micropollutants sulfamethoxazole (SMX) in a simulative natural water system. MP-DOM exerted a significant inhibition on the SMX photodegradation, mainly attributed to the direct photolysis inhibition of SMX caused by the inner filter effect and the complexation effect. Despite the enhanced reactive oxygen species (ROS) generation with the increase of their steady-state concentration by 41.1 - 160.7 %, PS-DOM exhibited high oxidation resistance, causing an inhibition on the photodegradation of SMX probably through transferring electrons to the SMX intermediates. This study helps to deepen the understanding of microplastic photochemical behavior in natural water.


Subject(s)
Microplastics , Water Pollutants, Chemical , Dissolved Organic Matter , Photolysis , Plastics , Polyethylenes , Polystyrenes , Reactive Oxygen Species , Sulfamethoxazole , Water
12.
Environ Sci Pollut Res Int ; 29(33): 50208-50217, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35226263

ABSTRACT

Floating photocatalyst is of extensive interest due to easy recovery and efficient light harvest. Support materials largely determine the stability of floating photocatalysts and their synthesis complexity. Thus, finding proper floating supports is very important. Herein, ethylene-vinyl acetate copolymer (EVA) was investigated as a support to prepare floating TiO2/EVA using a simple thermal crosslinking procedure. Multiple characterization analyses demonstrated that TiO2 was anchored onto EVA surface evenly via hydrogen-bond-enhanced physical crosslinking and remained its virgin crystal structure. Photocatalytic experiments showed that the removal efficiency of Rhodamine B (RhB) by floating TiO2/EVA increased by 33.8% as compared to suspended particle TiO2. The h+ and ·O2- played dominant roles in TiO2/EVA-driven RhB degradation. A 30-day stability test demonstrated that TiO2/EVA had a high thermal, pH, and photo- stability. The three-run reuse test proved that TiO2/EVA exhibited satisfactory reusability. This study provides a new option for floating photocatalyst synthesis.


Subject(s)
Ethylenes , Titanium , Catalysis , Titanium/chemistry , Vinyl Compounds
13.
Sci Total Environ ; 819: 152080, 2022 May 01.
Article in English | MEDLINE | ID: mdl-34856273

ABSTRACT

Zero-valent iron (ZVI) can enhance anaerobic digestion, and has great potential to alleviate/eliminate methanogenesis inhibition. Little is known about the feasibility of utilizing ZVI to alleviate methanogenesis inhibition that is caused by typical animal feed additive roxarsone in livestock wastewater. In this study, the role of ZVI on alleviating roxarsone-induced methanogenic inhibition and its mechanisms were investigated. With the increase of roxarsone concentration from 5 to 50 mg/L, the inhibition of methanogenesis increased from 3.0% to 65.7%. This inhibition was alleviated by 80.7% and 57.2% when 1.0 and 10.0 g/L ZVI were added, respectively. Due to ZVI addition, an efficient arsenic immobilization onto ZVI (45.4-85.8%) was achieved mainly through the formation of FeAsO4 precipitate and adsorption by ZVI. Under the function of ZVI, hydrogenotrophic methanogenic activity was obviously restored. The microbial community analysis indicates that the ZVI-regulated alleviation on the methanogenesis inhibition was attributed to the enrichment of Methanobacterium and Methanosarcina. The findings from this study demonstrate that ZVI addition is an effective way for treatment of organoarsenic-contaminated wastewater.


Subject(s)
Iron , Roxarsone , Anaerobiosis , Animals , Methane , Sewage/microbiology
14.
Environ Sci Pollut Res Int ; 29(5): 7844-7852, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34480704

ABSTRACT

Roxarsone (ROX), an organoarsenic feed additive, can be discharged into aquatic environment and photodegraded into more toxic inorganic arsenics. However, the photodegradation behavior of ROX in aquatic environment is still unclear. To better understand ROX photodegradation behavior, the influencing factors, photodegradation mechanism, and process modelling of ROX photodegradation were investigated in this study. The results showed that ROX in the aquatic environment was degraded to inorganic As(III) and As(V) under light irradiation. The degradation efficiency was enhanced by 25% with the increase of light intensity from 300 to 800 µW/cm2 via indirect photolysis. The photodegradation was temperature dependence, but was only slightly affected by pH. Nitrate ion (NO3-) had an obvious influence, but sulfate, carbonate, and chlorate ions had a negligible effect on ROX degradation. Dissolved organic matter (DOM) in the solution inhibited the photodegradation. ROX photodegradation was mainly mediated by reactive oxygen species (in the form of single oxygen 1O2) generated through ROX self-sensitization under irradiation. Based on the data of factors affecting ROX photodegradation, ROX photodegradation model was built and trained by an artificial neural network (ANN), and the predicted degradation rate was in good agreement with the real values with a root mean square error of 1.008. This study improved the understanding of ROX photodegradation behavior and provided a basis for controlling the pollution from ROX photodegradation.


Subject(s)
Arsenicals , Roxarsone , Water Pollutants, Chemical , Dissolved Organic Matter , Neural Networks, Computer , Photolysis , Water Pollutants, Chemical/analysis
15.
Water Res ; 204: 117635, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34530225

ABSTRACT

The integrated vertical flow (IVF) constructed wetland consists of two or more chambers with heterogeneous flow patterns and strong aeration capability, possesses favorable remediation performance. The Constructed Wetland Model No.1 (CWM1) embedded in the OpenGeoSys # IPHREEQC was applied to investigate the wetland plant effects on treatment efficiency. Two fundamental functions of the plant roots (i) the radial oxygen loss (ROL) and (ii) exudation of internal organic carbon (IOC), are developed and implemented in the model to simulate the treating processes of planted laboratory-scale IVF wetlands fed by the synthetic wastewater. The good agreement between simulated results and measurements of the planted IVF wetland and the unplanted filters mimicking wetland demonstrates the combined effects of ROL and IOC and the model reliability. In summer the ammonia (NH4-N) and total nitrogen (TN) removals are high as above 90% in both IVF wetlands, and in winter they decline significantly to around 55% and 45% in unplanted wetland, contrastively to about 85% and 78% in the planted wetland. The nitrogen removal - COD/N ratio relation curves of IVF wetlands are proposed and obtained by modeling to evaluate organic carbon loading status. Based on the curves, the COD/N ratios of unplanted and planted wetlands are about 3∼7 and 3∼10 gCOD/gN for high TN removal respectively. Planted wetlands can tolerate a wider range of COD/N ratio influents than unplanted ones. The ROL in the unplanted wetland promotes COD and NH4-N removal, while may inhibit denitrification under low-temperature conditions. The single addition of IOC enhances the oxygen-consuming and restrains the nitrification under the full loaded COD condition. Summing up all organic carbon releases from substrate and roots as IOC, the quantification of IOC acts on nitrogen treatment was simulated and compared with the external organic carbon (EOC) loading from influent. IOC performs higher efficiency on TN removal than EOC at the same organic loading rates. The results provide the thoughts of the solution for low TN removal in the carbon deficient constructed wetlands.


Subject(s)
Carbon , Wetlands , Nitrogen , Oxygen , Reproducibility of Results
16.
Anticancer Drugs ; 32(10): 1003-1010, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34145179

ABSTRACT

Surgical tumor removing is the most common procedure after a confirmed cancer diagnosis with no detected metastasis. Surgery can reduce tumor burden and address pathologic changes caused by local compression of tissues by the tumor. This lowers the chances of tumor cell spreading and creates more favorable conditions for further treatment. However, not all tumor cells can be eliminated through surgery. Even in the early stages of the disease, tumor cells often metastasize and cannot be identified by current detection methods. These tiny, disseminated tumors are often the cause of tumor recurrence. There is currently a lack of effective treatment options that can completely prevent tumor recurrence after surgery. To simulate the actual clinical situation, we selected murine-derived tumor cell lines S180 and Kcc853 to establish a post-transplantation residual tumor model in mice. Surgery was performed on mice inoculated with tumors. Tumor tissue was partially excised to set up the postsurgical residual tumor models. The model simulated the clinical situation where tumor cells were not completely eliminated or there were small tumors that had metastasized before surgery. IL-12 was injected to observe its effect on residual tumors or metastatic microtumors. The administration of IL-12 after surgery can significantly inhibit the growth of residual tumors and metastasis, improve the postoperative tumor-free rate and address the problem of tumor recurrence caused by the growth of residual tumors and micro-metastasis. Therefore, the use of IL-12 antitumor cytokine combined with surgery can effectively inhibit tumor recurrence. Low-dose IL-12 (1-10 ng/kg in humans) can inhibit residual tumor growth.


Subject(s)
Antineoplastic Agents/pharmacology , Interleukin-12/pharmacology , Kidney Neoplasms/drug therapy , Sarcoma/drug therapy , Animals , Body Weight/drug effects , Cell Line, Tumor , Dose-Response Relationship, Drug , Female , Humans , Kidney Neoplasms/surgery , Mice , Mice, Nude , Sarcoma/surgery , Vincristine/pharmacology , Xenograft Model Antitumor Assays
17.
Chemosphere ; 270: 129460, 2021 May.
Article in English | MEDLINE | ID: mdl-33423004

ABSTRACT

Nitrogen removal is often limited in municipal wastewater treatment due to the insufficiency of carbon source, and using food wastes fermentation liquid as carbon source could cut down the cost of operating and recycle food wastes. Food wastes fermentation liquid production and application as external carbon source were explored in the laboratory and full-scale system in this study. In the laboratory scale, lactic acid and VFAs were the main components of fermentation liquid, and the highest total chemical oxygen demand (TCOD) production was obtained with activated sludge as inoculum. The yield of TCOD was around 794.5 mg/g TSfed and NH4+-N was 3.5 mg/g TSfed. The denitrification rate with fermentation liquid was slightly lower than acetic acid and butyric acid, but higher than lactic acid and starch. In the full-scale investigation, the TCOD concentration in fermentation liquid was in the range of 6.9-12.8 g/L and the ratio of TCOD/inorganic nitrogen was 210.5-504.5:1. NO3--N removal increased from 52.1% to 94.2% after fermentation liquid addition, confirming the potentiality of food wastes fermentation liquid replace the commercial carbon source in wastewater treatment plants.


Subject(s)
Carbon , Refuse Disposal , Bioreactors , Denitrification , Fermentation , Food , Laboratories , Nitrogen , Sewage , Waste Disposal, Fluid , Wastewater
18.
Bioresour Technol ; 323: 124576, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33401163

ABSTRACT

Anaerobic digestion is a promising biological method for treating phenol-containing wastewater. However, the low methane yield of phenol due to the biological toxicity limits its potential application. This study presents a novel method to enhance the conversion rate of phenol to methane by coupling of granular activated carbon and exogenous hydrogen (GAC/H2). The cumulative methane production in the GAC/H2, H2, GAC, and control groups were 408.2 ± 16.2, 336.5 ± 5.7, 287.2 ± 26. 2, and 258.1 ± 8.6 mL‬ CH4/g COD, respectively. Compared with the control group, the hydrogenotrophic methanogenic activity and electron transfer activity of GAC/H2 group were increased by 403.9 and 367.4%, respectively. The results of the 16SrRNA analysis indicated GAC enhanced the relative abundances of Syntrophus and Syntrophorhabdus, and hydrogen promoted the relative abundances of Cryptanaerobacter, Aminicenantes, and Methanobacterium. Therefore, the coupling of GAC and exogenous hydrogen promoted a dominate SAO-HM pathway to convert phenol to methane.


Subject(s)
Charcoal , Phenol , Acetates , Anaerobiosis , Bioreactors , Hydrogen , Methane
19.
Environ Sci Technol ; 55(1): 393-401, 2021 01 05.
Article in English | MEDLINE | ID: mdl-33301302

ABSTRACT

Roxarsone (ROX) is widely used in animal farms, thereby producing organoarsenic-bearing manure/wastewater. ROX cannot be completely degraded and nor can its arsenical metabolites be effectively immobilized during anaerobic digestion, potentially causing arsenic contamination upon discharge to the environment. Herein, we designed and tested a sulfate-mediated bioelectrochemical system (BES) to enhance ROX degradation and in situ immobilization of the released inorganic arsenic. Using our BES (0.5 V voltage and 350 µM sulfate), ROX and its metabolite, 4-hydroxy-3-amino-phenylarsonic acid (HAPA), were completely degraded within 13-22 days. In contrast, the degradation efficiency of ROX and HAPA was <85% during 32-day anaerobic digestion. In a sulfate-mediated BES, 75.0-83.2% of the total arsenic was immobilized in the sludge, significantly more compared to the anaerobic digestion (34.1-57.3%). Our results demonstrate that the combination of sulfate amendment and voltage application exerted a synergetic effect on enhancing HAPA degradation and sulfide-driven arsenic precipitation. This finding was further verified using real swine wastewater. A double-cell BES experiment indicated that As(V) and sulfate were transported from the anode to the cathode chamber and coprecipitated as crystalline alacranite in the cathode chamber. These findings suggest that the sulfate-mediated BES is a promising technique for enhanced arsenic decontamination of organoarsenic-bearing manure/wastewater.


Subject(s)
Arsenic , Roxarsone , Animals , Manure , Sewage , Sulfates , Swine
20.
J Hazard Mater ; 406: 124789, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33310328

ABSTRACT

Aromatic organoarsenicals are widely used in animal feeding operations and cause arsenic contamination on livestock wastewater and manure, thereby raising the risk of surface water pollution. Biological wastewater treatment processes are often used for livestock wastewater treatment. Organoarsenic removal and biotransformation under aerobic and anaerobic conditions, and the associated impacts have received extensive attention due to the potential threat to water security. The removal efficiency and biotransformation of organoarsenicals in biological treatment processes are reviewed. The underlying mechanisms are discussed in terms of functional microorganisms and genes. The impacts associated with organoarsenicals and their degradation products on microbial activity and performance of bioreactors are also documented. Based on the current research advancement, knowledge gaps and potential research in this field are discussed. Overall, this work delivers a comprehensive understanding on organoarsenic behaviors in biological wastewater treatment processes, and provides valuable information on the control of arsenic contamination from the degradation of organoarsenicals in biological wastewater treatment processes.


Subject(s)
Arsenic , Water Purification , Animals , Bioreactors , Biotransformation , Wastewater
SELECTION OF CITATIONS
SEARCH DETAIL
...