Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Pestic Biochem Physiol ; 201: 105911, 2024 May.
Article in English | MEDLINE | ID: mdl-38685231

ABSTRACT

Ammannia auriculata Willd. is a noxious broadleaf weed, commonly infesting rice ecosystems across southern China. A putative resistant A. auriculata population (AHSC-5) was sampled from a rice field of Anhui Province, where bensulfuron-methyl (BM) was unable to control its occurrence. This study aimed to determine the sensitivities of the AHSC-5 population to common-use herbicides, and to investigate the underlying resistance mechanisms. The bioassays showed that the AHSC-5 population was 138.1-fold resistant to BM, compared with the susceptible population (JSGL-1). Pretreatment of malathion reduced the resistance index to 19.5. ALS sequencing revealed an Asp376Glu substitution in the AHSC-5 population, and in vitro ALS activity assays found that 50% activity inhibition (I50) of BM in AHSC-5 was 75.4 times higher than that of JSGL-1. Moreover, the AHSC-5 population displayed cross-resistance to pyrazosulfuron-ethyl (10.6-fold), bispyribac­sodium (3.6-fold), and imazethapyr (2.2-fold), and was in the process of evolving multiple resistance to synthetic auxin herbicides fluroxypyr (2.3-fold) and florpyrauxifen-benzyl (3.1-fold). This study proved the BM resistance in A. auriculata caused by the Asp376Glu mutation and P450-regulated metabolism. This multi-resistant population can still be controlled by penoxsulam, MCPA, bentazone, and carfentrazone-ethyl, which aids in developing targeted and effective weed management strategies.


Subject(s)
Acetolactate Synthase , Cytochrome P-450 Enzyme System , Herbicide Resistance , Herbicides , Acetolactate Synthase/genetics , Acetolactate Synthase/antagonists & inhibitors , Herbicides/pharmacology , Herbicide Resistance/genetics , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Malathion/pharmacology , Sulfonylurea Compounds/pharmacology , Plant Weeds/drug effects , Plant Weeds/genetics , Amino Acid Substitution
2.
Pestic Biochem Physiol ; 197: 105648, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38072523

ABSTRACT

Leptochloa chinensis populations in China have evolved widespread resistance to acetyl coenzyme A carboxylase (ACCase)-inhibiting herbicides cyhalofop-butyl (CyB) and metamifop (Met). 124 L. chinensis populations, randomly collected from rice fields in Jiangsu Province, were surveyed for CyB and Met resistance status, and all potential ACCase gene resistance-conferring mutations and effective pre-emergence herbicides for its control were investigated. Single-dose tests confirmed that 82 (66.1%) and 70 (56.4%) populations evolved resistance to CyB and Met, respectively. ACCase sequencing revealed that 56.4% of the populations contain plants with diverse target-site ACCase mutations (Ile1781Leu, Trp1999Cys, Trp2027Cys, Trp2027Ser, Ile2041Asn, Gly2096Ala, and in particular, a Leu1818Phe mutation). Notably, the Leu1818Phe mutation had been detected in 8 resistant populations, indicating this mutation was prone to occur in L. chinensis. Additionally, 9.7% of the populations may have single metabolic resistance to CyB, as these populations was susceptible to Met, and no any ACCase mutations were found. Moreover, the resistant populations with different ACCase mutations showed 6.5 to 33.6-fold resistance to CyB, and 4.4 to 82.6-fold resistance to Met. Importantly, five pre-emergence herbicides, including pretilachlor, pendimethalin, clomazone, pyraclonil, and mefenacet, all exhibited good control effect on resistant L. chinensis populations. This work confirmed the prevalence and distribution of CyB and Met resistance in L. chinensis. Target-site ACCase mutations made a major contribution to CyB and Met resistance. Pre-emergence herbicides could be valuable tools for management of resistant L. chinensis populations.


Subject(s)
Herbicides , Poaceae , Acetyl-CoA Carboxylase/genetics , Acetyl-CoA Carboxylase/metabolism , Herbicide Resistance/genetics , Herbicides/pharmacology , Mutation
3.
Pestic Biochem Physiol ; 194: 105530, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37532339

ABSTRACT

Eleusine indica causes problems in direct-seeding rice fields across Jiangsu Province in China. Long-term application of chemical herbicides has led to the widespread evolution of resistance in E. indica. In this study, we surveyed the resistance level of cyhalofop-butyl (CyB) in 19 field-collected E. indica biotypes, and characterized its underlying resistance mechanisms. All 19 biotypes evolved moderate- to high-level resistance to CyB (from 5.8- to 171.1-fold). 18 biotypes had a target-site mechanism with Trp-1999-Ser, Trp-2027-Cys, or Asp-2078-Gly mutations, respectively. One biotype (JSSQ-1) was identified to have metabolic resistance, in which malathion pretreatment significantly reduced the CyB resistance, and cyhalofop acid was degraded 1.7- to 2.5-times faster in this biotype compared with a susceptible control. Furthermore, the JSSQ-1 biotype showed multiple resistance to acetyl-CoA carboxylase (ACCase) inhibitor metamifop (RI = 4.6) and fenoxaprop-p-ethyl (RI = 5.1), acetolactate synthase (ALS) inhibitor imazethapyr (RI = 4.1), and hydroxyphenylpyruvate dioxygenase (HPPD) inhibitor mesotrione (RI = 3.5). In addition, 11 out of 19 E. indica biotypes exhibited multiple resistance to glyphosate. This research has identified the widespread occurrence of CyB resistance in E. indica, attributed to target-site mutations or enhanced metabolism. Moreover, certain biotypes have exhibited resistance to multiple herbicides or even cross-resistance. Consequently, there is an urgent need to implement diverse weed management practices to effectively combat the proliferation of this weed in rice fields.


Subject(s)
Eleusine , Herbicides , Oryza , Eleusine/genetics , Acetyl-CoA Carboxylase/metabolism , Herbicide Resistance/genetics , Oryza/genetics , Oryza/metabolism , Mutation , Herbicides/pharmacology
4.
Plants (Basel) ; 11(23)2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36501239

ABSTRACT

Glyphosate is a non-selective herbicide and is widely used for weed control in non-cultivated land in China. One susceptible (S) and five putative glyphosate-resistant (R1, R2, R3, R4, and R5) Eleusine indica biotypes were selected to investigate their resistance levels and the potential resistance mechanisms. Based on the dose-response assays, the R3 and R5 biotypes showed a low-level (2.4 to 3.5-fold) glyphosate resistance, and the R1, R2, and R4 biotypes exhibited a moderate- to high-level (8.6 to 19.2-fold) resistance, compared with the S biotype. The analysis of the target-site resistance (TSR) mechanism revealed that the P106A mutation and the heterozygous double T102I + P106S mutation were found in the R3 and R4 biotypes, respectively. In addition, the similar EPSPS gene overexpression was observed in the R1, R2, and R5 biotypes, suggesting that additional non-target-site resistance (NTSR) mechanisms may contribute to glyphosate resistance in R1 and R2 biotypes. Subsequently, an RNA-Seq analysis was performed to identify candidate genes involved in NTSR. In total, ten differentially expressed contigs between untreated S and R1 or R2 plants, and between glyphosate-treated S and R1 or R2 plants, were identified and further verified with RT-qPCR. One ATP-binding cassette (ABC) transporter gene, one aldo-keto reductases (AKRs) gene and one cytochrome P450 monooxygenase (CytP450) gene were up-regulated in R1 or R2 plants. These results indicated that EPSPS overexpression, single or double mutation was a common TSR mechanisms in E. indica. Additional NTSR mechanisms could play an essential role in glyphosate resistance. Three genes, ABCC4, AKR4C10, and CYP88, could serve as important candidate genes and deserve further functional studies.

5.
Plants (Basel) ; 11(15)2022 Jul 25.
Article in English | MEDLINE | ID: mdl-35893630

ABSTRACT

Ammanniaauriculata is a troublesome broadleaf weed, widely distributed in the paddy fields of southern China. In this study, 10 biotypes of A. auriculata were sampled from Yangzhou City, China, where the paddy fields were seriously infested with A. auriculata, and their resistance levels to acetolactate synthase (ALS) inhibitor bensulfuron-methyl were determined. The whole-plant response assays showed that nine A. auriculata biotypes were highly resistant (from 16.4- to 183.1-fold) to bensulfuron-methyl in comparison with a susceptible YZ-S biotype, and only one YZ-6 biotype was susceptible. ALS gene sequencing revealed that three ALS gene copies existed in A. auriculata, and four different amino acid substitutions (Pro197-Leu, -Ala, -Ser, and -His) at site 197 in the AaALS1 or 2 genes were found in eight resistant biotypes. In addition, no amino acid mutations in three ALS genes were found in the YZ-3 biotype. These results suggested that target-site mutations or non-target-site resistance mechanisms were involved in tested resistant A. auriculata biotypes. Finally, a cleaved amplified polymorphic sequence (CAPS) marker was identified to rapidly detect the Pro197 mutations in A. auriculata.

6.
Pest Manag Sci ; 78(6): 2332-2341, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35246931

ABSTRACT

BACKGROUND: A controlled-release formulation based on mesoporous silica nanoparticles (MSNs) provides an effective way for reducing pesticide use and protecting the ecological environment. In this study, MSNs loaded with pyraclostrobin (PYR@MSNs) were prepared using a one-pot method. RESULTS: The characteristics of PYR@MSNs were systematically investigated, including morphology, loading content, ultraviolet (UV) resistance, release behavior, control effects against pathogens, and safety to nontarget organisms. The results show that the prepared PYR@MSNs presented characteristics of regular spherical shapes, uniform particle size (200 nm), high drug loading (38.9%), and enhanced UV resistance. Compared with traditional formulation, PYR@MSNs exhibited improved control effects against Fusarium graminearum, an extended control period, and lower toxicity to zebrafish, earthworms and BEAS-2B cells. CONCLUSIONS: This research will facilitate the development of efficient and safe pesticide delivery systems. The PYR@MSNs has showed its potential as a new controlled-release formulation with increased efficacy and is expected to benefit the sustainable development of agriculture. © 2022 Society of Chemical Industry.


Subject(s)
Nanoparticles , Pesticides , Animals , Antifungal Agents/pharmacology , Containment of Biohazards , Delayed-Action Preparations , Drug Carriers/chemistry , Nanoparticles/chemistry , Porosity , Silicon Dioxide/chemistry , Strobilurins , Zebrafish
7.
Pest Manag Sci ; 77(10): 4627-4637, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34087044

ABSTRACT

BACKGROUND: Environmental stimuli-responsive release is one important way to reduce the dosage of pesticide, increase the usage efficiency and improve environmental compatibility. RESULTS: On this basis, we synthesized mesoporous silica nanoparticles (MSNs) and modified them to develop a thermosensitive pesticide controlled release formulation (CRF). In this study, MSNs prepared by the sol-gel method were used as the core, poly (N-IsoPropylAcrylaMide) [P (NIPAM-MAA)] was used as the shell, and buprofezin (Bup) was loaded by adsorption. The prepared Bup@MSNs@P(NIPAM-MAA) could effectively prevent the degradation of buprofezin under UV light and exhibited excellent adhesion to rice leaves. The bioassay results showed that the mortality of Nilaparvata lugens (Stål) treated by Bup@MSNs@P(NIPAM-MAA) was positively correlated with temperature, resulting mainly from the change of release amount of buprofezin caused by temperature variation. Bup@MSNs@P(NIPAM-MAA) had long duration (20 days) for controlling N. lugens, and did not hinder the growth of rice. Meanwhile, Bup@MSNs@P(NIPAM-MAA) had low toxicity to zebrafish and human pneumonocyte BEAS-2B cells. CONCLUSION: This novel thermosensitive pesticide CRF can be applied widely to other insecticides, thus greatly promoting the development of intelligent pesticide formulations. © 2021 Society of Chemical Industry.


Subject(s)
Nanoparticles , Silicon Dioxide , Animals , Humans , Pest Control , Porosity , Thiadiazines , Zebrafish
8.
Int J Biol Macromol ; 183: 1346-1351, 2021 Jul 31.
Article in English | MEDLINE | ID: mdl-34004200

ABSTRACT

Anti-idiotypic antibody technique is a new approach for the rapid development of insecticidal protein. In this study, anti-Cry1A polyclonal antibodies were used as antigen to screen the anti-idiotypic antibody that can simulate Cry1A toxins from a phage display human domain antibody (DAB) library. After four rounds of panning, five positive clones that have binding activities with anti-Cry1A polyclonal antibodies were obtained. Indirect competitive ELISA (IC-ELISA) results showed that the positive clone D6 showed significant inhibition for the binding of Cry1A toxins with anti-Cry1A polyclonal antibodies, and the inhibition ratio increased with the increase of D6 content. While, B3, F4, G5, C7 and the controls showed no obvious inhibition to Cry1A toxins. The results suggest that D6 is the "ß" subtype anti-idiotypic antibody, which can simulate Cry1A toxins and competitive binding with anti-Cry1A polyclonal antibodies. Meanwhile, D6 had certain binding activity with the brush border membrane vesicles (BBMV) of p. xylostella, which was the receptor of Cry1A toxins. The results of bioassay showed that D6 had certain insecticidal activity, and the lethal concentration of 50% (LC50) was 976 ng/cm2. This study provides basic materials and experience for the development of Cry toxin simulants.


Subject(s)
Bacillus thuringiensis Toxins/immunology , Endotoxins/immunology , Hemolysin Proteins/immunology , Peptide Library , Bacterial Proteins/immunology , Enzyme-Linked Immunosorbent Assay , Humans
9.
Pest Manag Sci ; 77(5): 2576-2583, 2021 May.
Article in English | MEDLINE | ID: mdl-33497007

ABSTRACT

BACKGROUND: Chinese sprangletop (Leptochloa chinensis (L.) Nees) is one of main grass weeds invading Chinese rice fields. The target-site resistance (TSR) of cyhalofop-butyl have been widely reported in L. chinensis populations, but the non-target-site resistance (NTSR) mechanisms have not yet been well-characterized. This study aims to investigate the likely NTSR in a cyhalofop-butyl-resistant L. chinensis population (YZ-R), which was collected from Yangzhou city, Jiangsu Province, China. RESULTS: Dose-response assays showed the YZ-R population exhibited 191.6-fold resistance to cyhalofop-butyl, compared to the susceptible population (YZ-S). This resistance is not target-site based, because no mutations in the two ACCase genes were detected in the YZ-R plants compared to the YZ-S plants, and the ACCase genes expression levels were similar in YZ-S and YZ-R plants. In addition, the cytochrome P450 inhibitor malathion and piperonyl butoxide (PBO), and glutathione S-transferase (GST) inhibitor 4-chloro-7-nitrobenzoxadiazole (NBD-Cl) did not significantly reverse cyhalofop-butyl resistance in the YZ-R population. However, liquid chromatography-mass spectrometry (LC-MS) analysis indicated that the metabolic rates of cyhalofop acid in YZ-R plants was significantly faster (5 to 10- fold) than in YZ-S plants. Furthermore, the YZ-R population showed no cross-resistance to other ACCase-inhibiting herbicides. CONCLUSION: These results indicated that cyhalofop-butyl resistance in the YZ-R population is due to non-target-site based enhanced herbicide metabolism. Resistance in this population is likely involved in a specific detoxification enzyme, with possible high catalytic efficiency and strong substrate specificity, therefore leading to high-level and single resistance to cyhalofop-butyl. © 2021 Society of Chemical Industry.


Subject(s)
Herbicide Resistance , Herbicides , Acetyl-CoA Carboxylase , Butanes , China , Herbicide Resistance/genetics , Herbicides/pharmacology , Nitriles , Plant Proteins/genetics , Poaceae/genetics
10.
Nanotechnology ; 31(34): 345705, 2020 Aug 21.
Article in English | MEDLINE | ID: mdl-32392541

ABSTRACT

Mesoporous silica nanoparticles (MSNs) can be designed to effectively load, protect, and control the release of pesticides. In this study, emulsion-solvent evaporation was used to fabricate abamectin-loaded MSNs. Our method could deliver abamectin in the process of MSN self-assembly, resulting in simple operation, short preparation period, and outstanding drug carrying capacity. The characteristics of abamectin-loaded MSNs, including morphology, loading content, stability against photolysis, controlled release behavior, and toxicological effect, were systematically investigated. Abamectin-loaded MSNs were successfully produced, having spherical shape, rough surface, uniform particle sizes, typically hollow structure, high loading efficiency (44.8%), excellent photodegradation-reducing ability, and controlled-release properties. The biological activity survey for abamectin-loaded MSNs showed excellent toxicological properties against Plutella xylostella larvae, and maintained biological activity until the 15th day, with 70% mortality of the target insect. The results of this study are beneficial for the development of a delivery system for the rational and effective usage of pesticides.


Subject(s)
Insecticides/pharmacology , Ivermectin/analogs & derivatives , Moths/drug effects , Silicon Dioxide/chemistry , Animals , Drug Carriers/chemistry , Drug Liberation , Drug Stability , Emulsions/chemistry , Insecticides/chemistry , Ivermectin/chemistry , Ivermectin/pharmacology , Larva/drug effects , Moths/growth & development , Nanoparticles , Particle Size , Porosity , Solvents/chemistry
11.
J Agric Food Chem ; 68(9): 2623-2630, 2020 Mar 04.
Article in English | MEDLINE | ID: mdl-32058714

ABSTRACT

Eleusine indica is a typical xerophytic weed species with a cosmopolitan distribution. It is invasive and highly adaptable to diverse habitats and crops. Due to rice cropping-pattern changes, E indica has become one of the main dominant grass weeds infecting direct-seeding paddy fields. A Chinese E. indica population has evolved multiple-herbicide resistance to cyhalofop-butyl and glyphosate. In this study, the multiple-resistance profile of E. indica to these two different types of herbicides and their resistance mechanisms were investigated. Whole-plant dose-response assays indicated that the multiple-herbicide-resistant (MHR) population exhibited 10.8-fold resistance to cyhalofop-butyl and 3.1-fold resistance to glyphosate compared with the susceptible (S) population. ACCase sequencing revealed that the Asp-2078-Gly mutation was strongly associated with E. indica resistance to cyhalofop-butyl. The MHR plants accumulated less shikimic acid than S plants at 4, 6, and 8 days after glyphosate treatment. In addition, no amino acid substitution in the EPSPS gene was found in MHR plants. Further analysis revealed that the relative expression level of EPSPS in MHR plants was 6-10-fold higher than that in S plants following glyphosate treatment, indicating that EPSPS overexpression may contribute to the glyphosate resistance. Furthermore, the effectiveness of nine post-emergence herbicides against E. indica were evaluated, and one PPO inhibitor pyraclonil was identified as highly effective in controlling the S and MHR E. indica populations.


Subject(s)
Butanes/pharmacology , Eleusine/drug effects , Glycine/analogs & derivatives , Herbicide Resistance , Herbicides/pharmacology , Nitriles/pharmacology , Eleusine/genetics , Eleusine/metabolism , Gene Expression Regulation, Plant , Glycine/pharmacology , Oryza/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Weeds/drug effects , Plant Weeds/genetics , Plant Weeds/metabolism , Glyphosate
12.
Pestic Biochem Physiol ; 158: 143-148, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31378350

ABSTRACT

Chinese sprangletop (Leptochloa chinensis (L.) Nees) is one of the most troublesome grass weeds in rice in China. Seven suspected cyhalofop-butyl-resistant L. chinensis populations were collected from different rice fields with a history of cyhalofop-butyl use. The level of resistance and resistance mechanisms in seven populations were studied. Dose-response tests indicated that five populations (JS3, JS4, JS6, JS7 and JS8) had evolved high-level resistance (26.9 to 123.0-fold) to cyhalofop-butyl compared with the susceptible (S) population, and other two populations (JS2 and JS5) were still sensitive to the herbicide. Two acetyl-coenzyme A carboxylase (ACCase) genes were cloned from each population, and three different ACCase mutations (Ile-1781-Leu, Trp-1999-Cys, and Trp-2027-Cys) in ACCase2 gene were determined in different resistant (R) populations. In addition, no resistance-conferring mutations was detected in the R population (JS7), and ACCase gene expression was similar between the S and R populations. Thus, non-target-site resistance mechanisms may be involved in the JS7 population. Moreover, the patterns of cross-resistance of JS6 (Ile-1781-Leu), JS4 (Trp-1999-Cys), JS8 (Trp-2027-Cys), and JS7 (unknown resistance mechanisms) populations to other ACCase-inhibiting herbicides were determined. The JS6 and JS8 populations showed resistance to fenoxaprop-P-ethyl, metamifop, clethodim and pinoxaden, the JS4 population was resistant to fenoxaprop-P-ethyl, metamifop and pinoxaden, and the JS7 population had resistance only to fenoxaprop-P-ethyl and metamifop. These results indicated the diversity of the target-site mutations in ACCase gene of L. chinensis, and provide a better understanding of cross-resistance in L. chinensis, which would be helpful for the management of cyhalofop-butyl-resistant L. chinensis.


Subject(s)
Acetyl-CoA Carboxylase/metabolism , Butanes/pharmacology , Herbicides/pharmacology , Nitriles/pharmacology , Poaceae/metabolism , Acetyl-CoA Carboxylase/genetics , China , Herbicide Resistance/genetics , Poaceae/drug effects
13.
Appl Opt ; 46(17): 3579-82, 2007 Jun 10.
Article in English | MEDLINE | ID: mdl-17514318

ABSTRACT

A simple switchable multiwavelength double-clad fiber laser using a multimode fiber Bragg grating (MMFG) as a wavelength selective component is demonstrated. The MMFG is fabricated directly in the active double-clad fiber, resulting in low splicing loss and compact configuration. By properly adjusting the polarization controller in the cavity, the double-clad fiber laser can stably operate at different multiwavelength states at room temperature. At lower pump levels, the laser can be switched between single- and dual-wavelength operations, while at higher pump levels the laser can switch between dual- and triple-wavelength operations. The slope efficiency of the system is 41% with the maximum output power of 6.2 W.

14.
Opt Lett ; 32(5): 469-71, 2007 Mar 01.
Article in English | MEDLINE | ID: mdl-17392890

ABSTRACT

We propose a novel polarization-maintaining index-guiding photonic crystal fiber (PCF). It is composed of a solid silica core and a cladding with squeezed-hexagonal-lattice elliptical air holes. Using a full-vector finite-element method, we study the modal birefringence of the fundamental modes in such PCFs. Numerical result shows that very high modal birefringence with a magnitude of the order of 10(-2) around 1550 nm has been obtained. Furthermore, large normal dispersion appears over a wide range of wavelengths in both orthogonal polarizations.

15.
Appl Opt ; 46(3): 283-6, 2007 Jan 20.
Article in English | MEDLINE | ID: mdl-17228369

ABSTRACT

We present a new method of the fiber grating sensing interrogation technique by utilizing an indium gallium arsenide photodiode linear array and blazed fiber Bragg gratings. An interrogation system based on an InGaAs photodiode linear array is designed, and the system performance is analyzed. The interrogation system shows a good prospect for smart sensing.

16.
Opt Express ; 15(14): 8925-30, 2007 Jul 09.
Article in English | MEDLINE | ID: mdl-19547230

ABSTRACT

We have proposed directional couplers operated by resonant coupling in all-solid photonic bandgap fibers structure which consist of a cladding with an array of high-index rods in silica background, two cores formed by omitting two rods, and some defect rods introduced by reducing the diameter of the high-index rods between the cores. The resonant effect induced by the avoided crossing between core-guided supermodes and defect-guided modes significant decreases the coupling length. The directional couplers proposed in this paper are almost polarization independent and have potential application in realizing integrating all-fiber communication devices.

17.
Opt Express ; 14(20): 9293-8, 2006 Oct 02.
Article in English | MEDLINE | ID: mdl-19529312

ABSTRACT

A suppressant effect for mode competition of multi-wavelength lasing oscillations induced by deeply saturated effect in an ordinary erbium-doped fiber ring laser (EDFRL) was observed and experimentally investigated. Results show that the effect is helpful to obtain stable multi-wavelength lasing at room temperature in the EDFRL, which offers a new and simple approach to achieve stable multi-wavelength EDF lasing. Stable two- and three- wavelength lasing oscillations were achieved based on the effect in the ordinary EDFRL for the first time to our best knowledge. The multi-wavelength lasing oscillations were so stable integrated over smaller than 1 ms that the maximum power fluctuation over more than 30 minutes of observation was less than 0.1 dB and 0.5 dB for two-wavelength lasing with a spacing of 1.28 nm and 0.76 nm, respectively.

18.
Opt Lett ; 30(20): 2703-5, 2005 Oct 15.
Article in English | MEDLINE | ID: mdl-16252747

ABSTRACT

A novel tunable highly birefringent photonic bandgap fiber (PBGF) is designed theoretically by filling its air holes with high-index material. The transmission band can be continuously tuned by changing the refractive index of the filling material. Accordingly, the tunable modal birefringence and polarization mode dispersion of the PBGFs are investigated by adjusting the refractive index of the filling material. Furthermore, we have also analyzed the effect of surface modes in the photonic bandgap on the characteristics of the tunable PBGFs. The simulation results show the feasibility of constructing birefringence-tunable photonic crystal fibers and related fiber devices in practical applications.

19.
Opt Lett ; 30(19): 2542-4, 2005 Oct 01.
Article in English | MEDLINE | ID: mdl-16208893

ABSTRACT

Coupling characteristics of dual-core photonic bandgap fibers with triangular photonic crystal cladding are investigated by use of a vector plane-wave expansion method and a vector finite-element method. We demonstrate the eigenmodes and the coupling length for two orthogonal polarizations. A decoupling phenomenon is found at a certain wavelength in this fiber configuration. The decoupling effect is attributed to the effect of surface modes on the eigenmodes. The decoupling wavelength decreases as the ratio of core radius to cladding air-hole pitch increases from 1.05 to 1.15.

20.
Opt Lett ; 30(18): 2372-4, 2005 Sep 15.
Article in English | MEDLINE | ID: mdl-16196323

ABSTRACT

Transformation of an optical transmission mechanism was achieved when the holes of normal silica-guiding microstructure fiber (MF) were filled with nematic liquid crystal (NLC). Moreover, two photonic bandgaps (PBGs) were obtained by using a plane-wave method to create the pattern. The wavelength dependence of the effective mode area, leakage loss, and group velocity dispersion (GVD) has been theoretically investigated by using a full-vector finite-element method with anisotropic perfectly matched layers. The results reveal that the characteristics of the NLC-filled PBG-MFs are particularly wavelength dependent. This research gives a physical insight into the propagation mechanism in MFs and is crucial for future transmission applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...