Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 13(1): e9646, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36620403

ABSTRACT

Understanding the patterns of bird diversity and its driving force is necessary for bird strike prevention. In this study, we investigated the effects of landscape on phylogenetic and functional diversity of bird communities at Nanjing Lukou International Airport (NLIA). Bird identifications and counting of individuals were carried out from November 2017 to October 2019. Based on the land-cover data, the landscape was divided into four main types, including farmlands, woodlands, wetlands, and urban areas. Bird phylogenetic and functional diversity were strongly affected by landscape matrix types. Species richness and Faith's phylogenetic distance were highest in woodlands, while mean pairwise distance (MPD), mean nearest-taxon distance (MNTD), and functional dispersion (FDis) were highest in wetlands. Based on the feeding behavior, carnivorous birds had the lowest species richness but had the highest FDis, which implied that carnivorous birds occupied most niches at the NLIA. Moreover, bird assemblages exhibited phylogenetic and functional clustering in the four kinds of landscapes. A variety of landscape attributes had significant effects on species diversity, phylogenetic and functional diversity. Landscape-scale factors played an important role in the shaping of bird communities around NLIA. Our results suggest that landscape management surrounding airports can provide new approaches for policymakers to mitigate wildlife strikes.

2.
Ecol Evol ; 12(7): e9051, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35813928

ABSTRACT

The biodiversity in mountainous ecosystems is high but is threatened by rapid environmental change. Urbanization and other anthropogenic factors in the mountains can affect land use and spatial fragmentation. Moreover, patterns of habitat are closely related to elevation and have a major effect on montane biodiversity. The aim of this study was to analyze the effects of spatial fragmentation on the vertical distribution pattern of bird diversity by characterizing the structure of the bird community, species diversity, and landscape factors at different altitudes. From 2016 to 2019, this study made a four years of continuous monitoring of the breeding birds. The result indicated that Mount Tai harbored a high bird diversity. Bird richness, abundance, and Shannon-Wiener index decreased with latitude in Mount Tai monotonically. Moreover, the structure of bird communities varied along altitudinal gradients, and some special species were supported in different elevational bands due to the environmental filtering. Road density, number of habitat patches, patch density, and the percentage of forest were significantly related to bird diversity. Sufficient habitat and more patches in the low-mountain belt supported higher bird diversity. The middle-mountain belt and high-mountain belt showed contrasting patterns. Our results highlight the effects of on-going urbanization and human activities on montane biodiversity and emphasize the need for artificial habitats in the mountains to be managed.

3.
Animals (Basel) ; 12(10)2022 May 12.
Article in English | MEDLINE | ID: mdl-35625095

ABSTRACT

The true frogs of the genus Rana are a complex and diverse group, containing approximately 60 species with wide distribution across Eurasia and the Americas. Recently, many new species have been discovered with the help of molecular markers and morphological traits. However, the evolutionary history in Rana was not well understood and might be limited by the absence of mitogenome information. In this study, we sequenced and annotated the complete mitochondrial genome of R. longicrus and R. zhenhaiensis, containing 22 tRNAs, 13 protein-coding genes, two ribosomal RNAs, and a non-coding region, with 17,502 bp and 18,006 bp in length, respectively. In 13 protein codon genes, the COI was the most conserved, and ATP8 had a fast rate of evolution. The Ka/Ks ratio analysis among Rana indicated the protein-coding genes were suffering purify selection. There were three kinds of gene arrangement patterns found. The mitochondrial gene arrangement was not related to species diversification, and several independent shifts happened in evolutionary history. Climate fluctuation and environmental change may have played an essential role in species diversification in Rana. This study provides mitochondrial genetic information, improving our understanding of mitogenomic structure and evolution, and recognizes the phylogenetic relationship and taxonomy among Rana.

4.
PeerJ ; 10: e13268, 2022.
Article in English | MEDLINE | ID: mdl-35462767

ABSTRACT

Background: The genus Calidris (Charadriiformes, Scolopacidae) includes shorebirds known as dunlin, knots, and sanderlings. The relationships between species nested within Calidris, including Eurynorynchus, Limicola and Aphriza, are not well-resolved. Methods: Samples were collected from Xiaoyangkou, Rudong County, Jiangsu Province, China. Mitogenomes were sequenced using the Illumina Novaseq 6000 platform for PE 2 × 150 bp sequencing, and then checked for PCR products. Protein-coding genes were determined using an Open Reading Frame Finder. tRNAscan-SE, MITOS, and ARWEN were used to confirm tRNA and rRNA annotations. Bioinformatic analyses were conducted using DnaSP 5.1 and MEGA X. Phylogenic trees were constructed using maximum likelihood and Bayesian analyses. Results: We sequenced and annotated the mitogenome of five species and obtained four complete mitogenomes and one nearly complete mitogenome. Circular mitogenomes displayed moderate size variation, with a mean length of 16,747 bp, ranging from 16,642 to 16,791 bp. The mitogenome encoded a control region and a typical set of 37 genes containing two rRNA genes, 13 protein-coding genes, and 22 tRNA genes. There were four start codons, four stop codons, and one incomplete stop codon (T-). The nucleotide composition was consistently AT-biased. The average uncorrected pairwise distances revealed heterogeneity in the evolutionary rate for each gene; the COIII had a slow evolutionary rate, whereas the ATP8 gene had a fast rate. dN/dS analysis indicated that the protein-coding genes were under purifying selection. The genetic distances between species showed that the greatest genetic distance was between Eurynorhynchus pygmeus and Limicola falcinellus (22.5%), and the shortest was between E. pygmeus and Calidris ruficollis (12.8%). Phylogenetic trees revealed that Calidris is not a monophyletic genus, as species from the genera Eurynorynchus and Limicola were nested within Calidris. The molecular data obtained in this study are valuable for research on the taxonomy, population genetics, and evolution of birds in the genus Calidris.


Subject(s)
Charadriiformes , Genome, Mitochondrial , Animals , Genome, Mitochondrial/genetics , Phylogeny , Bayes Theorem , Birds/genetics , RNA, Transfer/genetics , Codon, Terminator
5.
Ecol Evol ; 11(15): 10147-10154, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34367565

ABSTRACT

Climate change influences species geographical distribution and diversity pattern. The Chinese fire-bellied newt (Cynops orientalis) is an endemic species distributed in East-central China, which has been classified as near-threatened species recently due to habitat destruction and degradation and illegal trade in the domestic and international pet markets. So far, little is known about the spatial distribution of the species. Based on bioclimatic data of the current and future climate projections, we modeled the change in suitable habitat for C. orientalis by ten algorithms, evaluated the importance of environmental factors in shaping their distribution, and identified distribution shifts under climate change scenarios. In this study, 46 records of C. orientalis from East China and 8 bioclimatic variables were used. Among the ten modeling algorithms, four (GAM, GBM, Maxent, and RF) were selected according to their predictive abilities. The current habitat suitability showed that C. orientalis had a relatively wide but fragmented distribution, and it encompassed 41,862 km2. The models suggested that precipitation of warmest quarter (bio18) and mean temperature of wettest quarter (bio6) had the highest contribution to the model. This study revealed that C. orientalis is sensitive to climate change, which will lead to a large range shift. The projected spatial and temporal pattern of range shifts for C. orientalis should provide a useful reference for implementing long-term conservation and management strategies for amphibians in East China.

6.
Animals (Basel) ; 11(2)2021 Jan 29.
Article in English | MEDLINE | ID: mdl-33572967

ABSTRACT

Species dispersal patterns and population genetic structure can be influenced by geographical features. Qinling Mountains (QM) provide an excellent area for phylogeographic study. The phylogeography of Asian-wide wild boars revealed the colonization route. However, the impact of the QM on genetic diversity, genetic structure and population origin is still poorly understood. In this study, genetic analysis of wild boar in the QM was conducted based on the mitochondrial control region (943 bp) and twelve microsatellite loci of 82 individuals in 16 sampling locations. Overall genetic haplotype diversity was 0.86, and the nucleotide diversity was 0.0079. A total of 17 new haplotypes were detected. The level of genetic diversity of wild boars in QM was lower than in East Asia, but higher than in Europe. Phylogenetic analysis showed the weak genetic divergence in QM. Mismatch analysis, neutrality tests, and Bayesian Skyline Plot (BSP) results revealed that the estimates of effective population size were under demographic equilibrium in the past. Spatial analysis of molecular variance indicated no obvious phylogeographic structure.

7.
Nanoscale Res Lett ; 13(1): 396, 2018 Dec 05.
Article in English | MEDLINE | ID: mdl-30519822

ABSTRACT

Nanomaterials were widely used as efficient adsorbents for environmental remediation of tetracycline pollution. However, the separation of the adsorbents posed the challenge to their practical applications. In this study, we grew magnetic MnFe2O4 nanoparticles on the reduced graphene oxide (rGO) to form MnFe2O4/rGO nanocomposite with a one-step method. When used as the absorbent of Tetracycline, it exhibited an adsorption capacity of 41 mg/g. The adsorption kinetics and isotherm were fitted well with the pseudo-second order model and Freundlich model, respectively. The MnFe2O4/rGO nanocomposite could be easily extracted from the solution with the external magnetic field and regenerated with acid washing.

SELECTION OF CITATIONS
SEARCH DETAIL
...