Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(12): 14669-14679, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38498683

ABSTRACT

Mn-rich P2-type layered oxide cathode materials suffer from severe capacity loss caused by detrimental phase transition and transition metal dissolution, making their implementation difficult in large-scale sodium-ion battery applications. Herein, we introduced a high-valent Sb5+ substitution, leading to a biphasic P2/O3 cathode that suppresses the P2-O2 phase transformation in the high-voltage condition attributed to the stronger Sb-O covalency that introduces extra electrons to the O atom, reducing oxygen loss from the lattices and improving structural stability, as confirmed by first-principle calculations. Besides, the enhanced Na+ diffusion kinetics and thermodynamics in the modified sample are associated with the enlarged lattice parameters. As a result, the proposed cathode delivers a discharge capacity of 142.6 mAh g-1 at 0.1C between 1.5 and 4.3 V and excellent performance at a high mass loading of 8 mg cm3 with a specific capacity of 131 mAh g-1 at 0.2C. Furthermore, it also possesses remarkable rate capability (90.3 mAh g-1 at 5C), specifying its practicality in high-energy-density sodium-ion batteries. Hence, this work provides insights into incorporating high-valent dopants for high-performance Mn-rich cathodes.

2.
Chemistry ; 29(14): e202203977, 2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36576084

ABSTRACT

The electrochemical reduction of carbon dioxide (CO2 ) to value-added chemicals is a promising strategy to mitigate climate change. Metalloporphyrins have been used as a promising class of stable and tunable catalysts for the electrochemical reduction reaction of CO2 (CO2 RR) but have been primarily restricted to single-carbon reduction products. Here, we utilize functionalized earth-abundant manganese tetraphenylporphyrin-based (Mn-TPP) molecular electrocatalysts that have been immobilized via electrografting onto a glassy carbon electrode (GCE) to convert CO2 with overall 94 % Faradaic efficiencies, with 62 % being converted to acetate. Tuning of Mn-TPP with electron-withdrawing sulfonate groups (Mn-TPPS) introduced mechanistic changes arising from the electrostatic interaction between the sulfonate groups and water molecules, resulting in better surface coverage, which facilitated higher conversion rates than the non-functionalized Mn-TPP. For Mn-TPP only carbon monoxide and formate were detected as CO2 reduction products. Density-functional theory (DFT) calculations confirm that the additional sulfonate groups could alter the C-C coupling pathway from *CO→*COH→*COH-CO to *CO→*CO-CO→*COH-CO, reducing the free energy barrier of C-C coupling in the case of Mn-TPPS. This opens a new approach to designing metalloporphyrin catalysts for two carbon products in CO2 RR.

3.
J Am Chem Soc ; 144(42): 19417-19429, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36226909

ABSTRACT

Crystals are known to grow nonclassically or via four classical modes (the layer-by-layer, dislocation-driven, dendritic, and normal modes, which generally involve minimal interfacet surface diffusion). The field of nanoscience considers this framework to interpret how nanocrystals grow; yet, the growth of many anisotropic nanocrystals remains enigmatic, suggesting that the framework may be incomplete. Here, we study the solution-phase growth of pentatwinned Au nanorods without Br, Ag, or surfactants. Lower supersaturation conditions favored anisotropic growth, which appeared at variance with the known modes. Temporal electron microscopy revealed kinetically limited adatom funneling, as adatoms diffused asymmetrically along the vicinal facets (situated inbetween the {100} side-facets and {111} end-facets) of our nanorods. These vicinal facets were perpetuated throughout the synthesis and, especially at lower supersaturation, facilitated {100}-to-vicinal-to-{111} adatom diffusion. We derived a growth model from classical theory in view of our findings, which showed that our experimental growth kinetics were consistent with nanorods growing via two modes simultaneously: radial growth occurred via the layer-by-layer mode on {100} side-facets, whereas the asymmetric interfacet diffusion of adatoms to {111} end-facets mediated longitudinal growth. Thus, shape anisotropy was not driven by modulating the relative rates of monomer deposition on different facets, as conventionally thought, but rather by modulating the relative rates of monomer integration via interfacet diffusion. This work shows how controlling supersaturation, a thermodynamic parameter, can uncover distinct kinetic phenomena on nanocrystals, such as asymmetric interfacet surface diffusion and a fundamental growth mode for which monomer deposition and integration occur on different facets.


Subject(s)
Metal Nanoparticles , Nanotubes , Metal Nanoparticles/chemistry , Nanotubes/chemistry , Anisotropy , Kinetics , Surface-Active Agents
4.
Nanomaterials (Basel) ; 12(12)2022 Jun 13.
Article in English | MEDLINE | ID: mdl-35745365

ABSTRACT

Polyserotonin nanoparticles (PSeNP) and films are bioinspired nanomaterials that have potential in biomedical applications and surface coatings. As studies on polyserotonin (PSe) nanoparticles and films are still in their infancy, synthetic pathways and material development for this new class of nanomaterial await investigation. Here, we sought to determine how different buffers used during the polymerization of serotonin to form nanoparticles and films impact the physicochemical properties of PSe materials. We show that buffer components are incorporated into the polymer matrix, which is also supported by density functional theory calculations. While we observed no significant differences between the elasticity of nanoparticles synthesized in the different buffers, the nanoscale surface properties of PSe films revealed dissimilarities in surface functional groups influenced by solvent molecules. Overall, the results obtained in this work can be used towards the rational design of PSe nanomaterials with tailored properties and for specific applications.

5.
J Am Chem Soc ; 141(21): 8584-8591, 2019 05 29.
Article in English | MEDLINE | ID: mdl-31067857

ABSTRACT

The electrochemical reduction of CO2 has seen many record-setting advances in C2 productivity in recent years. However, the selectivity for ethanol, a globally significant commodity chemical, is still low compared to the selectivity for products such as ethylene. Here we introduce diverse binding sites to a Cu catalyst, an approach that destabilizes the ethylene reaction intermediates and thereby promotes ethanol production. We develop a bimetallic Ag/Cu catalyst that implements the proposed design toward an improved ethanol catalyst. It achieves a record Faradaic efficiency of 41% toward ethanol at 250 mA/cm2 and -0.67 V vs RHE, leading to a cathodic-side (half-cell) energy efficiency of 24.7%. The new catalysts exhibit an in situ Raman spectrum, in the region associated with CO stretching, that is much broader than that of pure Cu controls, a finding we account for via the diversity of binding configurations. This physical picture, involving multisite binding, accounts for the enhanced ethanol production for bimetallic catalysts, and presents a framework to design multimetallic catalysts to control reaction paths in CO2 reductions toward desired products.

SELECTION OF CITATIONS
SEARCH DETAIL
...