Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 13: 1009297, 2022.
Article in English | MEDLINE | ID: mdl-36267172

ABSTRACT

Taihu Lake is the third largest freshwater lake in China and an important source for drinking water, flood protection, aquaculture, agriculture, and other activities. This lake is connected to many principal and small rivers with inflow from west and outflow on the eastern side of the lake and these inflow rivers are believed to significantly contribute to the water pollution of the lake. This study was aimed at assessing the diversity and abundance of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs), and their relationship with water quality parameters and land use patterns. Water samples were collected from 10 major inflow rivers and the source water protection area of the Taihu Lake in spring and summer 2019. High-throughput profiling was used to detect and quantify 384 ARGs and MGEs and in addition, 11 water quality parameters were analyzed. The results showed that the number of ARGs/MGEs detected in each inflow river ranged from 105 to 185 in spring and 107 to 180 in summer. The aminoglycoside resistance genes were the most dominant types ARGs detected followed by beta-lactam resistance, multidrug resistance, macrolide-lincosamide-streptogramin B (MLSB) resistance genes, which contributed to 65% of the ARGs. The water quality parameters showed significant correlation with absolute abundance of ARGs. Furthermore, significant correlation between ARGs and MGEs were also observed which demonstrates potential gene transfer among organisms through horizontal gene transfer via MGEs. ARGs showed strong positive correlation with cultivated and industrial lands whereas, negative correlation was observed with river, lake, forest, land for green buffer, and land for port and harbor. The overall results indicate that the inflow rivers of Taihu Lake are polluted by various sources including multiple nutrients and high abundance of ARGs, which needs attention for better management of the inflow rivers of this lake.

2.
Curr Microbiol ; 77(11): 3512-3525, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32740713

ABSTRACT

Microbial communities are fundamental components in freshwater, and community shifts in ecosystem structure are indicative of changing environmental conditions. This study aimed at investigating the influence of key environmental parameters on bacterial diversity and ecosystem functioning (i.e. organic matter breakdown) in laboratory freshwater microcosms. The effects of varying temperatures (5, 20 and 35 °C), nutrients (representing low, medium and high urbanization) and heavy metals Copper (Cu) and Zinc (Zn) on bacterial diversity and organic matter (OM) breakdown were studied by using leaf bags and capsules filled with polycaprolactonediol-2000 (PCP-2000), respectively. The leaf-associated bacterial diversity was determined by next-generation sequencing of SSU rRNA gene amplicons. The results showed that bacterial diversity increased at high temperature (35 °C) with more operational taxonomic units (OTUs) as compared to medium (20 °C) or low (5 °C) temperatures, whereas nutrient variation had fewer effects on the bacterial community structure. In contrast, the presence of heavy metals, especially high concentrations (100 µM) of Cu, reduced the number of OTUs in the leaf-associated bacterial community. The higher temperatures and nutrient levels accelerated PCP-2000 breakdown rate, but this was impeded by a high concentration (100 µM) of Cu in the short term, though no effect of Zn on breakdown rate was observed. The overall results indicate that temperature and variated heavy metals are among the key factors that affect bacterial diversity and ecosystem functioning in freshwater systems.


Subject(s)
Ecosystem , Metals, Heavy , Fresh Water , High-Throughput Nucleotide Sequencing , Metals, Heavy/toxicity , Nutrients , Temperature
3.
Article in English | MEDLINE | ID: mdl-31100947

ABSTRACT

Urbanization is increasing worldwide and is happening at a rapid rate in China in line with economic development. Urbanization can lead to major changes in freshwater environments through multiple chemical and microbial contaminants. We assessed the impact of urbanization on physicochemical characteristics and microbial loading in canals in Suzhou, a city that has experienced rapid urbanization in recent decades. Nine sampling locations covering three urban intensity classes (high, medium and low) in Suzhou were selected for field studies and three locations in Huangshan (natural reserve) were included as pristine control locations. Water samples were collected for physicochemical, microbiological and molecular analyses. Compared to medium and low urbanization sites, there were statistically significant higher levels of nutrients and total and thermotolerant coliforms (or fecal coliforms) in highly urbanized locations. The effect of urbanization was also apparent in the abundances of human-associated fecal markers and bacterial pathogens in water samples from highly urbanized locations. These results correlated well with land use types and anthropogenic activities at the sampling sites. The overall results indicate that urbanization negatively impacts water quality, providing high levels of nutrients and a microbial load that includes fecal markers and pathogens.


Subject(s)
Bacteria/isolation & purification , Feces/microbiology , Urbanization , Water Pollutants/isolation & purification , China , Cities , Environmental Monitoring , Humans , Water Microbiology , Water Quality
4.
Biochem Soc Trans ; 42(4): 747-51, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25109952

ABSTRACT

Human leukaemia cells have an often unique ability to either undergo apoptotic cell death mechanisms or, at other times, undergo proliferative expansion, sometimes to the same stimulus such as the pluripotent cytokine TNFα (tumour necrosis factor α). This potential for life/death switching helps us to understand the molecular signalling machinery that underlies these cellular processes. Furthermore, looking at the involvement of these switching signalling pathways that may be aberrant in leukaemia informs us of their importance in cancer tumorigenesis and how they may be targeted pharmacologically to treat various types of human leukaemias. Furthermore, these important pathways may play a crucial role in acquired chemotherapy resistance and should be studied further to overcome in the clinic many drug-resistant forms of blood cancers. In the present article, we uncover the relationship that exists in human leukaemia life/death switching between the anti-apoptotic pro-inflammatory transcription factor NF-κB (nuclear factor κB) and the cytoprotective antioxidant-responsive transcription factor Nrf2 (nuclear factor-erythroid 2-related factor 2). We also discuss recent findings that reveal a major role for Btk (Bruton's tyrosine kinase) in both lymphocytic and myeloid forms of human leukaemias and lymphomas.


Subject(s)
Leukemia, Myeloid, Acute/metabolism , Agammaglobulinaemia Tyrosine Kinase , Humans , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Protein-Tyrosine Kinases/metabolism , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...