Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.032
Filter
1.
Perioper Med (Lond) ; 13(1): 35, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711142

ABSTRACT

BACKGROUND: The effect of elevated preoperative liver enzyme levels on postoperative outcomes is a topic of concern to clinicians. This study explored the association between elevated preoperative liver enzyme levels and surgical outcomes in patients undergoing orthopedic surgery. METHODS: Using the American College of Surgeons National Surgical Quality Improvement Program database, we obtained data on adult patients who received nonemergency orthopedic surgery under general anesthesia between 2011 and 2021. RESULTS: We evaluated the data of 477,524 patients, of whom 6.1% (24 197 patients) had elevated preoperative serum glutamic oxaloacetic transaminase (SGOT) levels. An elevated SGOT level was significantly associated with 30-day postoperative mortality (adjusted hazard ratio, 1.62; 95% confidence interval, 1.39 to 1.90). We determined that the mortality rate rose with SGOT levels. The results remained unchanged after propensity score matching. CONCLUSION: Elevated preoperative SGOT levels constitute an independent risk factor for 30-day postoperative mortality and are proportionately associated with the risk of 30-day postoperative mortality.

2.
Appl Microbiol Biotechnol ; 108(1): 340, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38777914

ABSTRACT

Horizontal gene transfer occurs frequently in bacteria, but the mechanism driving activation and optimization of the expression of horizontally transferred genes (HTGs) in new recipient strains is not clear. Our previous study found that spontaneous tandem DNA duplication resulted in rapid activation of HTGs. Here, we took advantage of this finding to develop a novel technique for tandem gene duplication, named tandem gene duplication selected by activation of horizontally transferred gene in bacteria (TDAH), in which tandem duplication was selected by the activation of horizontally transferred selectable marker gene. TDAH construction does not contain any reported functional elements based on homologous or site-specific recombination and DNA amplification. TDAH only contains an essential selectable marker for copy number selection and 9-bp-microhomology border sequences for precise illegitimate recombination. One transformation and 3 days were enough to produce a high-copy strain, so its procedure is simple and fast. Without subsequent knockout of the endogenous recombination system, TDAH could also generate the relatively stable high-copy tandem duplication for plasmid-carried and genome-integrated DNA. TDAH also showed an excellent capacity for increase gene expression and worked well in different industrial bacteria. We also applied TDAH to select the optimal high copy number of ribA for vitamin B2 production in E. coli; the yield was improved by 3.5 times and remained stable even after 12 subcultures. TDAH is a useful tool for recombinant protein production and expression optimization of biosynthetic pathways. KEY POINTS: • We develop a novel and efficient technique (TDAH) for tandem gene duplication in bacterium. TDAH is based on the mechanism of HTG rapid activation. TDAH does not contain any reported functional elements based on homologous recombination and DNA amplification. TDAH only contains an essential selectable marker for copy number selection, so its construction and procedure are very simple and fast. • TDAH is the first reported selected and stable tandem-gene-duplication technique in which the selected high-copy plasmid-carried and genome-integrated DNA could remain stable without the subsequent knockout of recombination system. • TDAH showed an excellent capacity for regulating gene expression and worked well in different industrial bacteria, indicating it is a useful tool for recombinant protein production and expression optimization of biosynthetic pathways. • TDAH was applied to select the optimal high copy number of ribA for vitamin B2 production in E. coli; the yield was improved by 3.5-fold and remained stable even after 12 subcultures.


Subject(s)
Escherichia coli , Gene Duplication , Gene Transfer, Horizontal , Plasmids , Escherichia coli/genetics , Escherichia coli/metabolism , Plasmids/genetics , Bacteria/genetics , Bacteria/metabolism , Gene Dosage , Recombination, Genetic
3.
EBioMedicine ; 103: 105137, 2024 May.
Article in English | MEDLINE | ID: mdl-38703606

ABSTRACT

BACKGROUND: Coronary artery disease (CAD) is a prevalent cardiovascular condition, and numerous studies have linked gut bacterial imbalance to CAD. However, the relationship of gut fungi, another essential component of the intestinal microbiota, with CAD remains poorly understood. METHODS: In this cross-sectional study, we analyzed fecal samples from 132 participants, split into 31 healthy controls and 101 CAD patients, further categorized into stable CAD (38), unstable angina (41), and acute myocardial infarction (22) groups. We conducted internal transcribed spacer 1 (ITS1) and 16S sequencing to examine gut fungal and bacterial communities. FINDINGS: Based on ITS1 analyses, Ascomycota and Basidiomycota were the dominant fungal phyla in all the groups. The α diversity of gut mycobiome remained unaltered among the control group and CAD subgroups; however, the structure and composition of the mycobiota differed significantly with the progression of CAD. The abundances of 15 taxa gradually changed with the occurrence and progression of the disease and were significantly correlated with major CAD risk factor indicators. The mycobiome changes were closely linked to gut microbiome dysbiosis in patients with CAD. Furthermore, disease classifiers based on gut fungi effectively identified subgroups with different degrees of CAD. Finally, the FUNGuild analysis further categorized these fungi into distinct ecological guilds. INTERPRETATION: In conclusion, the structure and composition of the gut fungal community differed from healthy controls to various subtypes of CAD, revealing key fungi taxa alterations linked to the onset and progression of CAD. Our study highlights the potential role of gut fungi in CAD and may facilitate the development of novel biomarkers and therapeutic targets for CAD. FUNDING: This work was supported by the grants from the National Natural Science Foundation of China (No. 82170302, 92168117, 82370432), National clinical key specialty construction project- Cardiovascular Surgery, the Reform and Development Program of Beijing Institute of Respiratory Medicine (No. Ggyfz202417, Ggyfz202308), the Beijing Natural Science Foundation (No. 7222068); and the Clinical Research Incubation Program of Beijing Chaoyang Hospital Affiliated to Capital Medical University (No. CYFH202209).


Subject(s)
Coronary Artery Disease , Gastrointestinal Microbiome , Mycobiome , Humans , Coronary Artery Disease/microbiology , Male , Female , Middle Aged , Aged , Cross-Sectional Studies , Feces/microbiology , Metagenomics/methods , Fungi/genetics , Fungi/classification , Fungi/isolation & purification , Severity of Illness Index , Dysbiosis/microbiology , Case-Control Studies , RNA, Ribosomal, 16S/genetics , Adult
4.
J Phys Chem A ; 128(21): 4189-4198, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38748760

ABSTRACT

In order to investigate the impact of an external electric field on the sensitivity of ß-HMX explosives, we employ first-principles calculations to determine the molecular structure, dipole moment, and electronic properties of both ß-HMX crystals and individual ß-HMX molecules under varying electric fields. When the external electric field is increasing along the [100], [010], and [001] crystallographic directions of ß-HMX, the calculation results indicate that an increase in the bond length (N1-N3/N1'-N3') of the triggering bond, an increase in the main Qnitro (N3, N3') value, an increase in the minimum surface electrostatic potential, and a decrease in band gap all contribute to a reduction in its stability. Among these directions, the [010] direction exhibits the highest sensitivity, which can be attributed to the significantly smaller effective mass along the [010] direction compared with the [001] and [100] directions. Moreover, the application of an external electric field along the Y direction of the coordinate system on individual ß-HMX molecules reveals that the strong polarization effect induced by the electric field enhances the decomposition of the N1-N3 bonds. In addition, due to the periodic potential energy of ß-HXM crystal, the polarization effect of ß-HMX crystal caused by an external electric field is much smaller than that of a single ß-HXM molecule.

5.
Orthop Surg ; 16(6): 1407-1417, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38715422

ABSTRACT

OBJECTIVE: Focal cervical kyphotic deformity (FCK) without neurologic compression is not uncommon in patients with cervical spondylotic myelopathy (CSM) who underwent anterior cervical decompression and fusion (ACDF) surgery. It remains unclear whether FCK at non-responsible levels needs to be treated simultaneously. This study aims to investigate whether FCK at non-responsible levels is the prognostic factor for CSM and elucidate the surgical indication for FCK. METHODS: Patients with CSM who underwent ACDF between January 2016 and April 2021 were included. Patients were divided into two groups according to the presence of FCK and two classifications according to global cervical sagittal alignment. Clinical outcomes were compared using Japanese Orthopaedic Association (JOA) scores and recovery rate (RR) of neurologic function. Univariate and multivariate analysis based on RR assessed the relationship between various possible prognostic factors and clinical outcomes. The receiver operating characteristic curve (ROC) was used to determine the optimal cutoff value of the focal Cobb angle to predict poor clinical outcomes. RESULTS: A total of 94 patients were included, 41 with FCK and 53 without. Overall, the RR of neurologic function was significantly lower in the FCK than in the non-FCK group. Further analysis showed that the RR difference between the two groups was only observed in hypo-lordosis classification (kyphotic and sigmoid alignment), but not in the lordosis classification. Multivariate analysis showed that the preoperative focal Cobb angle in the FCK level (OR = 0.42; 95% CI = 0.18-0.97) was independently associated with clinical outcomes in the hypo-lordosis classification. The optimal cutoff point of the preoperative focal kyphotic Cobb angle was calculated at 4.05°. CONCLUSION: For CSM with hypo-lordosis, FCK was a risk factor for poor postoperative outcomes. Surgeons may consider treating the FCK simultaneously if the focal kyphotic Cobb angle of FCK is greater than 4.05° and is accompanied by cervical global kyphotic or sigmoid deformity.


Subject(s)
Cervical Vertebrae , Decompression, Surgical , Kyphosis , Spinal Fusion , Humans , Spinal Fusion/methods , Female , Male , Decompression, Surgical/methods , Middle Aged , Kyphosis/surgery , Cervical Vertebrae/surgery , Aged , Retrospective Studies , Spondylosis/surgery , Prognosis
6.
J Lipid Res ; : 100562, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38762122

ABSTRACT

Perinatal exposure to omega-3 and omega-6 polyunsaturated fatty acids (PUFAs) can be characterized through biomarkers in maternal or cord blood, or breast milk. Objectives were to describe perinatal PUFA status combining multiple biofluids, and to investigate how it was influenced by dietary intake during pregnancy and maternal FADS and ELOVL gene polymorphisms. This study involved 1,901 mother-child pairs from the EDEN cohort, with PUFA levels measured in maternal and cord erythrocytes, and colostrum. Maternal dietary PUFA intake during the last trimester was derived from a food frequency questionnaire. Twelve single nucleotide polymorphisms in FADS and ELOVL genes were genotyped from maternal DNA. Principal component analysis incorporating PUFA levels from the three biofluids identified patterns of perinatal PUFA status. Spearman's correlations explored associations between patterns and PUFA dietary intake, and linear regression models examined pattern associations with FADS or ELOVL haplotypes. Five patterns were retained: "High omega-3 LC-PUFAs, low omega-6 LC-PUFAs"; "Omega-6 LC-PUFAs"; "Colostrum LC-PUFAs"; "Omega-6 precursor (LA) and DGLA"; "Omega-6 precursor and colostrum ALA". Maternal omega-3 LC-PUFA intakes were correlated with "High omega-3 LC-PUFAs, low omega-6 LC-PUFAs" (r(DHA) = 0.33) and "Omega-6 LC-PUFAs" (r(DHA) = -0.19) patterns. Strong associations were found between FADS haplotypes and PUFA patterns except for "High omega-3 LC-PUFAs, low omega-6 LC-PUFAs". Lack of genetic association with the "High omega-3 LC-PUFAs, low omega-6 LC-PUFAs" pattern, highly correlated with maternal omega-3 LC-PUFA intake, emphasizes the importance of adequate omega-3 LC-PUFA intake during pregnancy and lactation. This study offers a more comprehensive assessment of perinatal PUFA status and its determinants.

7.
Int J Ophthalmol ; 17(5): 806-814, 2024.
Article in English | MEDLINE | ID: mdl-38766346

ABSTRACT

AIM: To explore the effects of hepatocyte growth factor (HGF) on retinal pigment epithelium (RPE) cell behaviors. METHODS: The human adult retinal pigment epithelial cell line-19 (ARPE-19) were treated by HGF or mesenchymal-epithelial transition factor (MET) inhibitor SU11274 in vitro. Cell viability was detected by a Cell Counting Kit-8 assay. Cell proliferation and motility was detected by a bromodeoxyuridine incorporation assay and a wound healing assay, respectively. The expression levels of MET, phosphorylated MET, protein kinase B (AKT), and phosphorylated AKT proteins were determined by Western blot assay. The MET and phosphorylated MET proteins were also determined by immunofluorescence assay. RESULTS: HGF increased ARPE-19 cells' viability, proliferation and migration, and induced an increase of phosphorylated MET and phosphorylated AKT proteins. SU11274 significantly reduced cell viability, proliferation, and migration and decreased the expression of MET and AKT proteins. SU11274 suppressed HGF-induced increase of viability, proliferation, and migration in ARPE-19 cells. Additionally, SU11274 also blocked HGF-induced phosphorylation of MET and AKT proteins. CONCLUSION: HGF enhances cellular viability, proliferation, and migration in RPE cells through the MET/AKT signaling pathway, whereas this enhancement is suppressed by the MET inhibitor SU11274. HGF-induced MET/AKT signaling might be a vital contributor of RPE cells survival.

8.
iScience ; 27(5): 109510, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38660406

ABSTRACT

Myocardial ischemia-reperfusion (I/R) injury stands out among cardiovascular diseases, and current treatments are considered unsatisfactory. For cardiomyocytes (CMs) in ischemic tissues, the upregulation of Limb-bud and Heart (LBH) and αB-crystallin (CRYAB) and their subsequent downregulation in the context of cardiac fibrosis have been verified in our previous research. Here, we focused on the effects and mechanisms of activated LBH-CRYAB signaling on damaged CMs during I/R injury, and confirmed the occurrence of mitochondrial apoptosis and ferroptosis during I/R injury. The application of inhibitors, ectopic expression vectors, and knockout mouse models uniformly verified the role of LBH in alleviating both apoptosis and ferroptosis of CMs. p53 was identified as a mutual downstream effector for both LBH-CRYAB-modulated apoptosis and ferroptosis inhibition. In mouse models, LBH overexpression was confirmed to exert enhanced cardiac protection against I/R-induced apoptosis and ferroptosis, suggesting that LBH could serve as a promising target for the development of I/R therapy.

9.
Front Biosci (Landmark Ed) ; 29(4): 149, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38682191

ABSTRACT

BACKGROUND: The diagnostic potential of circular RNAs (circRNAs) in circulating exosomes for acute myocardial infarction (AMI) is not well understood, despite existing research indicating their role in cardiovascular diseases. This study aimed to clarify the significance of exosomal circular RNAs as indicators for AMI. METHODS: We examined 120 individuals diagnosed with AMI and 83 individuals with non-cardiogenic chest pain (NCCP), all previously enrolled in a conducted study. High-throughput sequencing to identify differentially expressed circRNAs in the circulating exosomes of AMI patients. To validate, we employed Real-Time polymerase chain reaction (RT-PCR) targeting five circRNAs that exhibited notable increase. RESULTS: The sequencing identified 893 exosomal circRNAs with altered expression in AMI patients, including 118 up-regulated and 775 down-regulated circRNAs. Genes linked to these circRNAs were enriched in crucial Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, highlighting their direct relevance to AMI pathophysiology. Three exosomal circRNAs (hsa_circ_0001558, hsa_circ_0001535, and hsa_circ_0000972) showed significant up-regulation in AMI patients during the initial validation cohort. The corresponding area under the curve (AUC) values were 0.79, 0.685, and 0.683, respectively. Further validation of hsa_circ_0001558 in a second cohort showed a 4.45-fold increase in AMI patients, with AUC = 0.793. The rise was particularly noticeable in patients with non-ST-elevation myocardial infarction (NSTEMI) (2.80 times, AUC = 0.72) and patients with ST-elevation myocardial infarction (STEMI) (5.27 times, AUC = 0.831) compared to patients with NCCP. CONCLUSIONS: Our findings demonstrate significant differences in the expression patterns of circRNAs in plasma exosomes between AMI patients and NCCP patients. Specifically, hsa_circ_0001558 appears as a promising indicator for AMI diagnosis. Further research is necessary to fully evaluate the diagnostic potential of exosomal circRNAs in the context of AMI, emphasizing the importance of these findings.


Subject(s)
Biomarkers , Exosomes , Myocardial Infarction , RNA, Circular , Humans , RNA, Circular/genetics , RNA, Circular/blood , Exosomes/genetics , Exosomes/metabolism , Myocardial Infarction/genetics , Myocardial Infarction/blood , Myocardial Infarction/diagnosis , Biomarkers/blood , Male , Middle Aged , Female , Aged , High-Throughput Nucleotide Sequencing , Real-Time Polymerase Chain Reaction , Case-Control Studies
10.
World Neurosurg ; 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38561028

ABSTRACT

OBJECTIVE: To determine the relationship between the uncinate process (UP) and vertebral artery (VA) from a radiologic view and to confirm the surgical safety margin to minimize the risk of VA injury during anterior cervical approaches. METHODS: We retrospectively reviewed computed tomography angiography of 205 patients by using a contrast-enhanced computed tomography angiography protocol of the VA. Four kinds of images were simultaneously reconstructed to measure all the parameters associated with VA and UP of cervical spine. RESULTS: The shortest distance from the UP's tip to the VA's medial border (P < 0.001) was at the C-6 level (2.9 ± 0.9 mm on the left and 3.2 ± 1.3 mm on the right), and the longest distance (P < 0.001) was at the C-3 level on both sides. The distance between UP's tip and the medial border of the ipsilateral VA was statistically significantly different at each cervical level, and the right distance was larger than the left (P < 0.05). We found the height of UP gradually increased from C-3 to C5-level and then decreased from C-5 to C-7 level for both sides. The mean distance between the medial borders of left UP and left VA was on average 7.5 ± 1.4 mm. The diameter of VA was on average 3.4 ± 0.6 mm on the left side and 3.2 ± 0.7 mm on the right. The diameter of the VA was statistically significantly different on both sides, and the left side was larger than the right (P < 0.05). CONCLUSIONS: Detailed radiologic anatomy of VA and UP was reviewed in this study. A deep understanding of the correlation between the UP and VA is essential to perform anterior cervical spine surgery safely and ensure adequate spinal canal decompression.

11.
Sci Total Environ ; 928: 172299, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38614340

ABSTRACT

This study assesses the association of short-term exposure to PM2.5 (particles ≤2.5 µm) on infectious diseases among Chinese children and adolescents. Analyzing data from 507 cities (2008-2021) on 42 diseases, it focuses on PM2.5 components (black carbon (BC), ammonium (NH4+), inorganic nitrate (NO3-), organic matter (OM), and sulfate (SO42-)). PM2.5 constituents significantly associated with incidence. Sulfate showed the most substantial effect, increasing all-cause infectious disease risk by 2.72 % per interquartile range (IQR) increase. It was followed by BC (2.04 % increase), OM (1.70 %), NO3- (1.67 %), and NH4+ (0.79 %). Specifically, sulfate and BC had pronounced impacts on respiratory diseases, with sulfate linked to a 10.73 % increase in seasonal influenza risk and NO3- to a 16.39 % rise in tuberculosis. Exposure to PM2.5 also marginally increased risks for gastrointestinal, enterovirus, and vectorborne diseases like dengue (7.46 % increase with SO42-). Sexually transmitted and bloodborne diseases saw an approximate 6.26 % increase in incidence, with specific constituents linked to diseases like hepatitis C and syphilis. The study concludes that managing PM2.5 levels could substantially reduce infectious disease incidence, particularly in China's middle-northern regions. It highlights the necessity of stringent air quality standards and targeted disease prevention, aligning PM2.5 management with international guidelines for public health protection.


Subject(s)
Air Pollutants , Cities , Communicable Diseases , Environmental Exposure , Particulate Matter , Humans , Particulate Matter/analysis , China/epidemiology , Adolescent , Child , Communicable Diseases/epidemiology , Environmental Exposure/statistics & numerical data , Air Pollutants/analysis , Air Pollution/statistics & numerical data , Cross-Over Studies , Male , East Asian People
12.
Front Biosci (Landmark Ed) ; 29(4): 160, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38682208

ABSTRACT

BACKGROUND: Nasopharyngeal carcinoma (NPC) is a malignant tumor associated with Epstein-Barr virus (EBV) infection. Chemoradiotherapy is the mainstream treatment for locally advanced NPC, and chemotherapeutic drugs are an indispensable part of NPC treatment. However, the toxic side-effects of chemotherapy drugs limit their therapeutic value, and new chemotherapy drugs are urgently needed for NPC. Silvestrol, an emerging natural plant anticancer molecule, has shown promising antitumor activity in breast cancer, melanoma, liver cancer, and other tumor types by promoting apoptosis in cancer cells to a greater extent than in normal cells. However, the effects of silvestrol on NPC and its possible molecular mechanisms have yet to be fully explored. METHODS: Cell counting kit-8 (CCK-8), cell scratch, flow cytometry, 5-ethynyl-2'-deoxyuridine (EdU), and Western blot (WB) assays were used to evaluate the effects of silvestrol on the cell viability, cell cycle, apoptosis, and migration of NPC cells. RNA sequencing (RNA-Seq) was used to study the effect of extracellular signal-regulated kinase (ERK) inhibitors on the cell transcriptome, and immunohistochemistry (IHC) to assess protein expression levels in patient specimens. RESULTS: Silvestrol inhibited cell migration and DNA replication of NPC cells, while promoting the expression of cleaved caspase-3, apoptosis, and cell cycle arrest. Furthermore, silvestrol altered the level of ERK phosphorylation. The ERK-targeted inhibitor LY3214996 attenuated silvestrol-mediated inhibition of NPC cell proliferation but not migration. Analysis of RNA-Seq data and WB were used to identify and validate the downstream regulatory targets of silvestrol. Expression of GADD45A, RAP1A, and hexokinase-II (HK2) proteins was inhibited by silvestrol and LY3214996. Finally, IHC revealed that GADD45A, RAP1A, and HK2 protein expression was more abundant in cancer tissues than in non-tumor tissues. CONCLUSIONS: Silvestrol inhibits the proliferation of NPC cells by targeting ERK phosphorylation. However, the inhibition of NPC cell migration by silvestrol was independent of the Raf-MEK-ERK pathway. RAP1A, HK2, and GADD45A may be potential targets for the action of silvestrol.


Subject(s)
Benzofurans , GADD45 Proteins , Hexokinase , MAP Kinase Signaling System , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , rap1 GTP-Binding Proteins , Humans , Apoptosis/drug effects , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , MAP Kinase Signaling System/drug effects , Nasopharyngeal Carcinoma/drug therapy , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Neoplasms/drug therapy , Nasopharyngeal Neoplasms/genetics , Nasopharyngeal Neoplasms/pathology , Hexokinase/genetics , Hexokinase/metabolism , rap1 GTP-Binding Proteins/genetics , rap1 GTP-Binding Proteins/metabolism , GADD45 Proteins/genetics , GADD45 Proteins/metabolism
13.
PLoS Med ; 21(4): e1004374, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38607981

ABSTRACT

BACKGROUND: An accelerated epidemiological transition, spurred by economic development and urbanization, has led to a rapid transformation of the disease spectrum. However, this transition has resulted in a divergent change in the burden of infectious diseases between urban and rural areas. The objective of our study was to evaluate the long-term urban-rural disparities in infectious diseases among children, adolescents, and youths in China, while also examining the specific diseases driving these disparities. METHODS AND FINDINGS: This observational study examined data on 43 notifiable infectious diseases from 8,442,956 cases from individuals aged 4 to 24 years, with 4,487,043 cases in urban areas and 3,955,913 in rural areas. The data from 2013 to 2021 were obtained from China's Notifiable Infectious Disease Surveillance System. The 43 infectious diseases were categorized into 7 categories: vaccine-preventable, bacterial, gastrointestinal and enterovirus, sexually transmitted and bloodborne, vectorborne, zoonotic, and quarantinable diseases. The calculation of infectious disease incidence was stratified by urban and rural areas. We used the index of incidence rate ratio (IRR), calculated by dividing the urban incidence rate by the rural incidence rate for each disease category, to assess the urban-rural disparity. During the nine-year study period, most notifiable infectious diseases in both urban and rural areas exhibited either a decreased or stable pattern. However, a significant and progressively widening urban-rural disparity in notifiable infectious diseases was observed. Children, adolescents, and youths in urban areas experienced a higher average yearly incidence compared to their rural counterparts, with rates of 439 per 100,000 compared to 211 per 100,000, respectively (IRR: 2.078, 95% CI [2.075, 2.081]; p < 0.001). From 2013 to 2021, this disparity was primarily driven by higher incidences of pertussis (IRR: 1.782, 95% CI [1.705, 1.862]; p < 0.001) and seasonal influenza (IRR: 3.213, 95% CI [3.205, 3.220]; p < 0.001) among vaccine-preventable diseases, tuberculosis (IRR: 1.011, 95% CI [1.006, 1.015]; p < 0.001), and scarlet fever (IRR: 2.942, 95% CI [2.918, 2.966]; p < 0.001) among bacterial diseases, infectious diarrhea (IRR: 1.932, 95% CI [1.924, 1.939]; p < 0.001), and hand, foot, and mouth disease (IRR: 2.501, 95% CI [2.491, 2.510]; p < 0.001) among gastrointestinal and enterovirus diseases, dengue (IRR: 11.952, 95% CI [11.313, 12.628]; p < 0.001) among vectorborne diseases, and 4 sexually transmitted and bloodborne diseases (syphilis: IRR 1.743, 95% CI [1.731, 1.755], p < 0.001; gonorrhea: IRR 2.658, 95% CI [2.635, 2.682], p < 0.001; HIV/AIDS: IRR 2.269, 95% CI [2.239, 2.299], p < 0.001; hepatitis C: IRR 1.540, 95% CI [1.506, 1.575], p < 0.001), but was partially offset by lower incidences of most zoonotic and quarantinable diseases in urban areas (for example, brucellosis among zoonotic: IRR 0.516, 95% CI [0.498, 0.534], p < 0.001; hemorrhagic fever among quarantinable: IRR 0.930, 95% CI [0.881, 0.981], p = 0.008). Additionally, the overall urban-rural disparity was particularly pronounced in the middle (IRR: 1.704, 95% CI [1.699, 1.708]; p < 0.001) and northeastern regions (IRR: 1.713, 95% CI [1.700, 1.726]; p < 0.001) of China. A primary limitation of our study is that the incidence was calculated based on annual average population data without accounting for population mobility. CONCLUSIONS: A significant urban-rural disparity in notifiable infectious diseases among children, adolescents, and youths was evident from our study. The burden in urban areas exceeded that in rural areas by more than 2-fold, and this gap appears to be widening, particularly influenced by tuberculosis, scarlet fever, infectious diarrhea, and typhus. These findings underscore the urgent need for interventions to mitigate infectious diseases and address the growing urban-rural disparity.


Subject(s)
Communicable Diseases , Scarlet Fever , Tuberculosis , Child , Adolescent , Humans , Communicable Diseases/epidemiology , China/epidemiology , Diarrhea
14.
Sci Total Environ ; 927: 172233, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38615759

ABSTRACT

OBJECTIVE: Children and adolescents are particularly vulnerable to the effects of various environmental factors, which could disrupt growth processes and potentially lead to obesity. Currently, comprehensive and systematic assessments of these environmental exposures during developmental periods are lacking. Therefore, this study aims to evaluate the association between external environmental exposures and the incidence of obesity in children and adolescents. METHODS: Data was collected from the 2019 Chinese National Survey on Students' Constitution and Health, including 214,659 Han children aged 7 to 19. Body Mass Index (BMI) and BMI-for-age z-score (zBMI) were the metrics used to assess overweight and obesity prevalence. The study assessed 18 environmental factors, including air pollutants, natural space, land cover, meteorological conditions, built environment, road conditions, and artificial light at night. Exposome-wide association study (ExWAS) to analyze individual exposures' associations with health outcomes, and Weighted Quantile Sum (WQS) to assess cumulative exposure effects. RESULTS: Among the children and adolescents, there were 24.2 % participants classified as overweight or obesity. Notably, 17 out of 18 environmental factors exhibited significant associations with zBMI and overweight/obesity. Seven air pollutants, road conditions, and built density were positively correlated with higher zBMI and obesity risk, while NDVI, forests, and meteorological factors showed negative correlations. Co-exposure analysis highlighted that SO2, ALAN, PM10, and trunk road density significantly increased zBMI, whereas rainfall, grassland, and forest exposure reduced it. Theoretically reduction in the number and prevalence of cases was calculated, indicating potential reductions in prevalence of up to 4.51 % for positive exposures and 5.09 % for negative exposures. Notably, substantial reductions were observed in regions with high pollution levels. CONCLUSION: This large-scale investigation, encompassing various environmental exposures in schools, highlights the significant impact of air pollution, road characteristics, rainfall, and forest coverage on childhood obesity.


Subject(s)
Air Pollutants , Environmental Exposure , Exposome , Humans , Child , Adolescent , Environmental Exposure/statistics & numerical data , China/epidemiology , Female , Male , Air Pollutants/analysis , Pediatric Obesity/epidemiology , Air Pollution/statistics & numerical data , Young Adult , Body Mass Index , Prevalence
15.
PLoS Pathog ; 20(3): e1012086, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38484013

ABSTRACT

Papain-like cysteine proteases (PLCPs) play pivotal roles in plant defense against pathogen invasions. While pathogens can secrete effectors to target and inhibit PLCP activities, the roles of PLCPs in plant-virus interactions and the mechanisms through which viruses neutralize PLCP activities remain largely uncharted. Here, we demonstrate that the expression and activity of a maize PLCP CCP1 (Corn Cysteine Protease), is upregulated following sugarcane mosaic virus (SCMV) infection. Transient silencing of CCP1 led to a reduction in PLCP activities, thereby promoting SCMV infection in maize. Furthermore, the knockdown of CCP1 resulted in diminished salicylic acid (SA) levels and suppressed expression of SA-responsive pathogenesis-related genes. This suggests that CCP1 plays a role in modulating the SA signaling pathway. Interestingly, NIa-Pro, the primary protease of SCMV, was found to interact with CCP1, subsequently inhibiting its protease activity. A specific motif within NIa-Pro termed the inhibitor motif was identified as essential for its interaction with CCP1 and the suppression of its activity. We have also discovered that the key amino acids responsible for the interaction between NIa-Pro and CCP1 are crucial for the virulence of SCMV. In conclusion, our findings offer compelling evidence that SCMV undermines maize defense mechanisms through the interaction of NIa-Pro with CCP1. Together, these findings shed a new light on the mechanism(s) controlling the arms races between virus and plant.


Subject(s)
Cysteine Proteases , Mosaic Viruses , Potyvirus , Zea mays/genetics , Cysteine Proteases/genetics , Salicylic Acid/metabolism , Mosaic Viruses/metabolism , Plant Diseases
17.
Health Sci Rep ; 7(3): e1987, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38505680

ABSTRACT

Background and Aims: Both nonalcoholic fatty liver disease (NAFLD) and cholelithiasis are highly prevalent hepatobiliary diseases with risk of progression into severe outcomes. Considering the close relationship between liver and gallbladder in anatomy and physiology, a potential causal relationship between NAFLD and cholelithiasis has been speculated. Methods: Mendelian randomization (MR) was employed using genome-wide association study (GWAS) summary statistics in Million Veteran Program (MVP) for NAFLD, and statistics in UK biobank for cholelithiasis. Results: Our results demonstrate that NAFLD has a causal effect on cholelithiasis risk (OR, 1.003; 95%CI, 1.000-1.006; p = 0.03). We also performed the sensitivity analysis and heterogeneity test to ensure the accuracy of outcome and avoid the reverse causality. Conclusion: NAFLD should be regarded as a potential pathogenic factor in pathogenesis study of cholelithiasis, and be considered in assessment and treatment of cholelithiasis.

18.
BMC Cancer ; 24(1): 345, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38500077

ABSTRACT

BACKGROUND: Meningioma, the most prevalent intracranial tumor, possesses a significant propensity for malignant transformation. Circular RNAs (circ-RNAs), a class of non-coding RNAs, have emerged as crucial players in tumorigenesis. This study explores the functional relevance of hsa_circ_0004872, a specific circ-RNA, in the context of meningioma. METHODS: Molecular structure and stability of hsa_circ_0004872 were elucidated through PCR identification. Meningioma cell proliferation and apoptosis were assessed using the CCK-8 assay and flow cytometry, respectively. Gene and protein expression were analyzed via qRT-PCR and western blot. Molecular interactions were confirmed through dual-luciferase reporter gene and RIP assays. RESULTS: Hsa_circ_0004872, derived from exons 2 to 4 of the host gene MAPK1, demonstrated enhanced stability compared to its host MAPK1. Clinical data described that hsa_circ_0004872 was reduced in meningioma tissues and cell lines, and negatively correlated to poor survival rate of meningioma patients. Overexpression of hsa_circ_0004872 exhibited inhibitory effects on cell proliferation and promotion of apoptosis in vitro. Subsequent investigations unveiled a direct interaction between hsa_circ_0004872 and miR-190a-3p, leading to the activation of the PI3K/AKT signaling pathway through targeting PTEN. Notably, miR-190a-3p silence accelerated the apoptosis and proliferation inhibition of meningioma cells by inactivating PTEN/PI3K/AKT signaling, while miR-190a-3p overexpression showed an opposite effect, which greatly reversed the anti-tumor effects of hsa_circ_0004872 overexpression. CONCLUSION: In summary, our findings highlighted the intricate role of hsa_circ_0004872 in meningioma, shedding light on the regulatory mechanisms involving circ-RNAs in tumor progression. This positions hsa_circ_0004872 as a potential key regulatory factor in meningioma with implications for future therapeutic interventions.


Subject(s)
Meningeal Neoplasms , Meningioma , MicroRNAs , Humans , Cell Line, Tumor , Cell Movement , Cell Proliferation/genetics , Cell Transformation, Neoplastic , Gene Expression Regulation, Neoplastic , Meningeal Neoplasms/genetics , Meningioma/genetics , MicroRNAs/genetics , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt/genetics , PTEN Phosphohydrolase/genetics , Signal Transduction/genetics
19.
Eur J Gastroenterol Hepatol ; 36(5): 636-645, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38477858

ABSTRACT

BACKGROUND AND AIMS: Clinical observation revealed an increase in metabolic dysfunction-associated steatotic liver disease (MASLD) prevalence among adults and adolescents and young adults (AYA). However, its prevalence trend in specific subgroups and its characteristics are unclear. APPROACH AND RESULTS: This cross-sectional study included adults and AYA aged 20-79 and 12-19 years, respectively, from the National Health and Nutrition Examination Survey from 1999 to 2018. MASLD was defined as US Fatty Liver Index ≥30 in adults and alanine amino transaminase elevation and obesity in AYA. Joinpoint and logistic regression were used to evaluate the MASLD prevalence trend and its associated characteristics. MASLD was diagnosed in 17 156 892 of 51 109 914 (33.6%) adults and 1 705 586 of 29 278 666 AYA (5.8%). During the study period, MASLD prevalence significantly increased from 30.8% to 37.7% ( P  < 0.01) in adults and in subgroups of female participants, individuals aged 20-45 and 61-79 years, and non-Hispanic white individuals. Conversely, MASLD prevalence did not significantly change in AYA (from 5.1% to 5.2%, P  = 0.139), except in the subgroup of Mexican Americans (from 8.2% to 10.8%, P  = 0.01). Among adults, high MASLD prevalence was associated with male sex, Mexican American ethnicity, age >50 years, being unmarried, poverty income ratio <130, poor or fair health condition, obesity or overweight, and chronic conditions. Among AYA, high MASLD prevalence was associated with male sex, poverty income ratio <130, and education. CONCLUSION: Accordingly, we concluded that health care providers should prevent and treat conditions associated with MASLD by raising awareness of the increasing trend of MASLD.


Subject(s)
Fatty Liver , Adolescent , Young Adult , Female , Male , Humans , Cross-Sectional Studies , Nutrition Surveys , Prevalence , Alanine Transaminase , Obesity/epidemiology
20.
Nanomaterials (Basel) ; 14(5)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38470775

ABSTRACT

Calcium titanium oxide has emerged as a highly promising material for optoelectronic devices, with recent studies suggesting its potential for favorable thermoelectric properties. However, current experimental observations indicate a low thermoelectric performance, with a significant gap between these observations and theoretical predictions. Therefore, this study employs a combined approach of experiments and simulations to thoroughly investigate the impact of structural and directional differences on the thermoelectric properties of two-dimensional (2D) and three-dimensional (3D) metal halide perovskites. Two-dimensional (2D) and three-dimensional (3D) metal halide perovskites constitute the focus of examination in this study, where an in-depth exploration of their thermoelectric properties is conducted via a comprehensive methodology incorporating simulations and experimental analyses. The non-equilibrium molecular dynamics simulation (NEMD) was utilized to calculate the thermal conductivity of the perovskite material. Thermal conductivities along both in-plane and out-plane directions of 2D perovskite were computed. The NEMD simulation results show that the thermal conductivity of the 3D perovskite is approximately 0.443 W/mK, while the thermal conductivities of the parallel and vertical oriented 2D perovskites increase with n and range from 0.158 W/mK to 0.215 W/mK and 0.289 W/mK to 0.309 W/mK, respectively. Hence, the thermal conductivity of the 2D perovskites is noticeably lower than the 3D ones. Furthermore, the parallel oriented 2D perovskites exhibit more effective blocking of heat transfer behavior than the perpendicular oriented ones. The experimental results reveal that the Seebeck coefficient of the 2D perovskites reaches 3.79 × 102 µV/K. However, the electrical conductivity of the 2D perovskites is only 4.55 × 10-5 S/cm, which is one order of magnitude lower than that of the 3D perovskites. Consequently, the calculated thermoelectric figure of merit for the 2D perovskites is approximately 1.41 × 10-7, slightly lower than that of the 3D perovskites.

SELECTION OF CITATIONS
SEARCH DETAIL
...