Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 386
Filter
1.
Insect Sci ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783625

ABSTRACT

Vitellogenin receptor (VgR) plays a crucial role in oogenesis by mediating endocytosis of vitellogenin and a portion of the yolk proteins in many insect species. However, the function of VgR in minute parasitoid wasps is largely unknown. Here, we applied Trichogramma dendrolimi, a minute egg parasitoid, as a study model to investigate the function of VgR in parasitoids. We developed RNA interference (RNAi) methods based on microinjection of prepupae in T. dendrolimi. RNAi employs nanomaterial branched amphipathic peptide capsules (BAPC) as a carrier for double-stranded RNA (dsRNA), significantly enhancing delivery efficiency. Also, artificial hosts without medium were used to culture the injected prepupae in vitro. Utilizing these methods, we found that ovarian growth was disrupted after knockdown of TdVgR, as manifested by the suppressed development of the ovariole and the inhibition of nurse cell internalization by oocytes. Also, the initial mature egg load in the ovary was significantly reduced. Notably, the parasitic capacity of the female adult with ovarian dysplasia was significantly decreased, possibly resulting from the low availability of mature eggs. Moreover, ovarian dysplasia in T. dendrolimi caused by VgR deficiency are conserved despite feeding on different hosts. The results confirmed a critical role of TdVgR in the reproductive ability of T. dendrolimi and provided a reference for gene functional studies in minute insects.

2.
Sci Total Environ ; 938: 173351, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38788944

ABSTRACT

As a significant source of global energy consumption and greenhouse gas emissions, the construction industry garners widespread attention due to its high carbon emissions. Anticipating its development trends is crucial for energy conservation and emission reduction. In this paper, we utilize the carbon emission data from China's national and provincial construction sectors from 2012 to 2021, employ the grey prediction model optimized by the particle swarm optimization algorithm, coupled with a metabolic algorithm, to forecast the carbon emissions of the construction industry across China and its provinces. The results demonstrate that: (1) The dynamic grey prediction model combined with the metabolism algorithm has a better prediction effect than the classical model, and the relative error is reduced from 5.103 % to 0.874 %. (2) The carbon emissions of China's construction industry will continue to rise in the next decade, but the growth rate will decrease, and the proportion of indirect carbon emissions continues to increase. (3) There is a marked regional disparity in carbon emissions, with the eastern region exhibiting higher emission levels yet slower growth. In contrast, the western region has lower emission levels but experiences faster growth. These studies provide valuable insights for both the existing approaches to energy conservation and emission reduction, as well as for future policy improvements.

3.
Ann Hum Genet ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38766954

ABSTRACT

INTRODUCTION: Multiple insertion-deletion (multi-InDel) has greater potential in forensic genetics than InDel, and its efficacy in kinship testing, individual identification, DNA mixture detection and ancestry inference remains to be explored. METHODS: Consequently, we designed an efficient and robust system consisting of 41 multi-InDels to evaluate its efficacy in forensic applications in Chinese Hezhou Han (HZH) and Southern Shaanxi Han (SNH) populations and explore the genetic relationships between the SNH, HZH, and 26 reference populations. RESULTS AND CONCLUSION: The obtained results showed that 38 out of the 41 multi-InDels had fairly high genetic variations. The the cumulative probability of discrimination and exclusion values of the multi-InDels (except MI38) in HZH and SNH populations both exceeded 1-e-25 and 1-e-6, correspondingly. The genetic compositions of HZH and SNH individuals were similar to that of East Asians and the Naive Bayes model could well distinguish East Asians, Africans and Americans. These results indicated that the multi-InDel systerm can serve as an effective tool to provide important evidence for the development of multi-InDels in forensic practice and better analyse the genetic background of the Han Chinese populations.

4.
Theriogenology ; 225: 9-15, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38781849

ABSTRACT

Autophagy is essential for oocyte maturation and preimplantation embryo development. ATG4C, a member of the ATG4 family, plays a crucial role in the autophagy process. The effect of ATG4C on the early embryonic development in pig has not been studied. In this study, the expression patterns of ATG4C were explored using qRT-PCR and immunofluorescence staining. Different concentrations of serum were added to in vitro maturation (IVM) medium to investigate its effects on oocyte maturation and embryonic development. Finally, the developmental potential of parthenogenetic embryos was detected by downregulating ATG4C in MII stage oocytes under 0 % serum condition. The results revealed that ATG4C was highly expressed in porcine oocytes matured in vitro and in parthenogenetic embryos. Compared with the 10 % serum group, the cumulus cell expansion, first polar body (PB1) extrusion rate, and subsequent developmental competence of embryos were reduced in the 0 % and 5 % serum groups. The mRNA levels of LC3, ATG5, BECLIN1, TFAM, PGC1α, and PINK1 were significantly increased (P < 0.05) in the 0 % serum group. ATG4C was significantly upregulated in the embryos at the 1-cell, 2-cell, 8-cell, and 16-cell stages in the 0 % serum group (P < 0.05). Compared with the negative control group, downregulation of ATG4C significantly decreased the 4-cell, 8-cell, and blastocyst rates (P < 0.05), and the expression of genes related to autophagy, mitochondria, and zygotic genome activation (ZGA) was significantly decreased (P < 0.05). The relative fluorescence intensity of LC3 and mitochondrial content in the ATG4C siRNA group was significantly reduced (P < 0.05). Collectively, the results indicate that ATG4C is highly expressed in porcine oocytes matured in vitro and in early embryos, and inhibition of ATG4C effects embryonic developmental competence by decreasing autophagy, mitochondrial content, and ZGA under serum-free condition.

5.
J Med Chem ; 67(10): 7836-7858, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38695063

ABSTRACT

The approval of venetoclax, a B-cell lymphoma-2 (Bcl-2) selective inhibitor, for the treatment of chronic lymphocytic leukemia demonstrated that the antiapoptotic protein Bcl-2 is a druggable target for B-cell malignancies. However, venetoclax's limited potency cannot produce a strong, durable clinical benefit in other Bcl-2-mediated malignancies (e.g., diffuse large B-cell lymphomas) and multiple recurrent Bcl-2 mutations (e.g., G101V) have been reported to mediate resistance to venetoclax after long-term treatment. Herein, we described novel Bcl-2 inhibitors with increased potency for both wild-type (WT) and mutant Bcl-2. Comprehensive structure optimization led to the clinical candidate BGB-11417 (compound 12e, sonrotoclax), which exhibits strong in vitro and in vivo inhibitory activity against both WT Bcl-2 and the G101V mutant, as well as excellent selectivity over Bcl-xL without obvious cytochrome P450 inhibition. Currently, BGB-11417 is undergoing phase II/III clinical assessments as monotherapy and combination treatment.


Subject(s)
Antineoplastic Agents , Mutation , Proto-Oncogene Proteins c-bcl-2 , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Humans , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Structure-Activity Relationship , Mice , Cell Line, Tumor , Sulfonamides/pharmacology , Sulfonamides/chemistry , Rats , Drug Discovery
6.
Langmuir ; 40(22): 11817-11827, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38760325

ABSTRACT

Improving the dispersibility and compatibility of nanomaterials in water-borne epoxy resins is an important means to improve the protection ability and corrosion resistance of coatings. In this study, glycine-functionalized Ti3C2Tx (GT) was used to prepare an epoxy composite coating. The results of Fourier transform infrared spectroscopy and X-ray diffraction showed that glycine was successfully modified. The scanning electron microscopy and transmission electron microscopy results showed that the aggregation of Ti3C2Tx was alleviated. Electrochemical impedance spectroscopy test results show that, after 60 days of immersion, GT coating still shows the best protection performance, and the composite coating |Z|f = 0.01 Hz is 3 orders of magnitude higher than that of the pure epoxy coating. This is mainly because, after adding glycine, the -COOH group on the surface of glycine binds to the -OH group on the surface of Ti3C2Tx, improving the aggregation of Ti3C2Tx itself. At the same time, the -NH group of glycine can also participate in the curing reaction of epoxy resin to strengthen the bonding strength between the coating and the metal. The good dispersion of GT in epoxy resin makes it fill the pores and holes left by epoxy resin curing and strengthen the corrosion resistance. The easy availability and green properties of glycine provide a simple and environmentally friendly method for the modification of Ti3C2Tx.

7.
Article in English | MEDLINE | ID: mdl-38639614

ABSTRACT

Objective: Glioblastoma is the most common and aggressive type of the central nervous system cancers. Although radiotherapy and chemotherapy are used in the treatment of glioblastoma, survival rates remain unsatisfactory. This study aimed to explore differentially expressed genes (DEGs) based on the survival prognosis of patients with glioblastoma and to establish a model for classifying patients into different risk groups for overall survival. Methods: DEGs from 160 tumor samples from patients with glioblastoma and 5 nontumor samples from other patients in The Cancer Genome Atlas database were identified. Functional enrichment analysis and a protein-protein interaction network were used to analyze the DEGs. The prognostic DEGs were identified by univariate Cox regression analysis. We split patient data from The Cancer Genome Atlas database into a high-risk group and a low-risk group as the training data set. Least absolute shrinkage and selection operator and multiple Cox regression were used to construct a prognostic risk model, which was validated in a test data set from The Cancer Genome Atlas database and was analyzed using external data sets from the Chinese Glioma Genome Atlas database and the GSE74187 and GSE83300 data sets. Furthermore, we constructed and validated a nomogram to predict survival of patients with glioblastoma. Results: A total of 3572 prognostic DEGs were identified. Functional analysis indicated that these DEGs were mainly involved in the cell cycle and focal adhesion. Least absolute shrinkage and selection operator regression identified 3 prognostic DEGs (EFEMP2, PTPRN, and POM121L9P), and we constructed a prognostic risk model. The receiver operating characteristic curve analysis showed that the areas under the curve were 0.83 for the training data set and 0.756 for the test data set. The predictive performance of the prognostic risk model was validated in the 3 external data sets. The nomogram showed that the prognostic risk model was reliable and that the accuracy of predicting survival in each patient was high. Conclusion: The prognostic risk model can effectively classify patients with glioblastoma into high-risk and low-risk groups in terms of overall survival rate, which may help select high-risk patients with glioblastoma for more intensive treatment.

8.
J Cardiothorac Surg ; 19(1): 171, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38566106

ABSTRACT

BACKGROUND: Acute Type A aortic dissection (ATAAD) is a life-threatening cardiovascular disease associated with high mortality rates, where surgical intervention remains the primary life-saving treatment. However, the mortality rate for ATAAD operations continues to be alarmingly high. To address this critical issue, our study aimed to assess the correlation between preoperative laboratory examination, clinical imaging data, and postoperative mortality in ATAAD patients. Additionally, we sought to establish a reliable prediction model for evaluating the risk of postoperative death. METHODS: In this study, a total of 384 patients with acute type A aortic dissection (ATAAD) who were admitted to the emergency department for surgical treatment were included. Based on preoperative laboratory examination and clinical imaging data of ATAAD patients, logistic analysis was used to obtain independent risk factors for postoperative in-hospital death. The survival prediction model was based on cox regression analysis and displayed as a nomogram. RESULTS: Logistic analysis identified several independent risk factors for postoperative in-hospital death, including Marfan syndrome, previous cardiac surgery history, previous renal dialysis history, direct bilirubin, serum phosphorus, D-dimer, white blood cell, multiple aortic ruptures and age. A survival prediction model based on cox regression analysis was established and presented as a nomogram. The model exhibited good discrimination and significantly improved the prediction of death risk in ATAAD patients. CONCLUSIONS: In this study, we developed a novel survival prediction model for acute type A aortic dissection based on preoperative clinical features. The model demonstrated good discriminatory power and improved accuracy in predicting the risk of death in ATAAD patients undergoing open surgery.


Subject(s)
Aortic Dissection , Marfan Syndrome , Humans , Hospital Mortality , Retrospective Studies , Aortic Dissection/surgery , Risk Factors
9.
Acta Physiol (Oxf) ; 240(6): e14152, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38682304

ABSTRACT

Piezo1 is an essential mechanosensitive transduction ion channel in mammals. Its unique structure makes it capable of converting mechanical cues into electrical and biological signals, modulating biological and (patho)physiological processes in a wide variety of cells. There is increasing evidence demonstrating that the piezo1 channel plays a vital role in renal physiology and disease conditions. This review summarizes the current evidence on the structure and properties of Piezo1, gating modulation, and pharmacological characteristics, with special focus on the distribution and (patho)physiological significance of Piezo1 in the kidney, which may provide insights into potential treatment targets for renal diseases involving this ion channel.


Subject(s)
Ion Channels , Kidney , Mechanotransduction, Cellular , Ion Channels/metabolism , Humans , Animals , Mechanotransduction, Cellular/physiology , Kidney/metabolism
10.
Genes (Basel) ; 15(4)2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38674394

ABSTRACT

Retinoic acid-induced 1 (RAI1) is a dosage-sensitive gene that causes autistic phenotypes when deleted or duplicated. Observations from clinical cases and animal models also suggest that changes of RAI1 expression levels contribute to autism. Previously, we used a bioinformatic approach to identify several single nucleotide polymorphisms (SNPs) located within the 5'-region of RAI1 that correlate with RAI1 mRNA expression in the human brain. In particular, the SNP rs4925102 was identified as a candidate cis-acting regulatory variant, the genotype of which may affect the binding of transcription factors that influence RAI1 mRNA expression. In this study, we provide experimental evidence based on reporter gene, chromatin immunoprecipitation (ChIP), and chromatin conformation capture (3C) assays that rs4925102 regulates RAI1 mRNA expression in an allele-specific manner in human cell lines, including the neuroblastoma-derived cell line SH-SY5Y. We also describe a statistically significant association between rs4925102 genotype and autism spectrum disorder (ASD) diagnosis in a case-control study and near-statistically significant association in an Autism Genome Project (AGP) transmission disequilibrium (TDT) study using Caucasian subjects.


Subject(s)
Alleles , Polymorphism, Single Nucleotide , Humans , Autistic Disorder/genetics , Autism Spectrum Disorder/genetics , Case-Control Studies , Trans-Activators/genetics , Male , Genetic Predisposition to Disease , Cell Line, Tumor , Enhancer Elements, Genetic , Gene Expression Regulation/genetics , Female , Genotype
11.
Sci Total Environ ; 929: 172761, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38670357

ABSTRACT

Presently, the hydroxyl radical oxidation mechanism is widely acknowledged for the degradation of organic pollutants based on hydrodynamic cavitation technology. The presence and production mechanism of other potential reactive oxygen species (ROS) in the cavitation systems are still unclear. In this paper, singlet oxygen (1O2) and superoxide radical (·O2-) were selected as the target ROS, and their generation rules and mechanism in vortex-based hydrodynamic cavitation (VBHC) were analyzed. Computational fluid dynamics (CFD) were used to simulate and analyze the intensity characteristics of VBHC, and the relationship between the generation of ROS and cavitation intensity was thoroughly revealed. The results show that the operating conditions of the device have a significant and complicated influence on the generation of 1O2 and ·O2-. When the inlet pressure reaches to 4.5 bar, it is more favorable for the generation of 1O2 and ·O2- comparing with those lower pressure. However, higher temperature (45 °C) and aeration rate (15 (L/min)/L) do not always have positive effect on the 1O2 and ·O2- productions, and their optimal parameters need to be analyzed in combination with the inlet pressure. Through quenching experiments, it is found that 1O2 is completely transformed from ·O2-, and ·O2- comes from the transformation of hydroxyl radicals and dissolved oxygen. Higher cavitation intensity is captured and shown more disperse in the vortex cavitation region, which is consistent with the larger production and stronger diffusion of 1O2 and ·O2-. This paper shed light to the generation mechanism of 1O2 and ·O2- in VBHC reactors and the relationship with cavitation intensity. The conclusion provides new ideas for the research of effective ROS in hydrodynamic cavitation process.

12.
Plant Cell Rep ; 43(5): 116, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622229

ABSTRACT

KEY MESSAGE: The study on the GmDWF1-deficient mutant dwf1 showed that GmDWF1 plays a crucial role in determining soybean plant height and yield by influencing the biosynthesis of brassinosteroids. Soybean has not adopted the Green Revolution, such as reduced height for increased planting density, which have proven beneficial for cereal crops. Our research identified the soybean genes GmDWF1a and GmDWF1b, homologous to Arabidopsis AtDWF1, and found that they are widely expressed, especially in leaves, and linked to the cellular transport system, predominantly within the endoplasmic reticulum and intracellular vesicles. These genes are essential for the synthesis of brassinosteroids (BR). Single mutants of GmDWF1a and GmDWF1b, as well as double mutants of both genes generated through CRISPR/Cas9 genome editing, exhibit a dwarf phenotype. The single-gene mutant exhibits moderate dwarfism, while the double mutant shows more pronounced dwarfism. Despite the reduced stature, all types of mutants preserve their node count. Notably, field tests have shown that the single GmDWF1a mutant produced significantly more pods than wild-type plants. Spraying exogenous brassinolide (BL) can compensate for the loss in plant height induced by the decrease in endogenous BRs. Comparing transcriptome analyses of the GmDWF1a mutant and wild-type plants revealed a significant impact on the expression of many genes that influence soybean growth. Identifying the GmDWF1a and GmDWF1b genes could aid in the development of compact, densely planted soybean varieties, potentially boosting productivity.


Subject(s)
Arabidopsis , Brassinosteroids , Brassinosteroids/metabolism , Glycine max/genetics , CRISPR-Cas Systems/genetics , Mutation/genetics , Arabidopsis/metabolism , Gene Editing , Gene Expression Regulation, Plant/genetics
13.
Medicine (Baltimore) ; 103(12): e37472, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38518053

ABSTRACT

BACKGROUND: Iatrogenic aortic dissection (IAD) is a rare but highly lethal complication that may occur following coronary artery bypass grafting (CABG) surgery. Aortic dissection (AD) is often asymptomatic, making early detection difficult. We aimed to optimize preoperative evaluation strategies of CABG surgery for minimizing the incidence of IAD and assess early recognition and management of IAD for improving outcomes. METHODS: Electronic databases were searched to identify all case reports of patients undergoing CABG surgery who developed IAD. Clinical characteristics, operative information, perioperative management, and patient outcomes were compiled and analyzed. RESULTS: Nineteen case reports involving 27 patients aged 50 to 81 were included. Patients were from Europe (n = 23) and Asia (n = 4), mostly men (n = 25). The aorta was described as normal, abnormal, and unmentioned (n = 8, 5, and 14, respectively). Sixteen patients had a bypass with more than 3 grafts. Most patients (n = 25) experienced type A dissection. There were intraoperative (n = 12) and postoperative (n = 15) cases. Surgery (n = 19) was the most common treatment, with 9 patients selecting deep hypothermic circulatory arrest. Eighteen patients were restored to health, while 9 patients died (3 died before treatment). CONCLUSIONS: Our study focused on patients with IAD and developed a recommended management protocol for patients undergoing CABG surgery.


Subject(s)
Aortic Dissection , Coronary Artery Bypass , Male , Humans , Female , Coronary Artery Bypass/adverse effects , Coronary Artery Bypass/methods , Aortic Dissection/surgery , Aorta/surgery , Iatrogenic Disease , Asia , Treatment Outcome
14.
Mol Pain ; 20: 17448069241240692, 2024.
Article in English | MEDLINE | ID: mdl-38443317

ABSTRACT

Pain is a major symptom in cancer patients, and cancer-induced bone pain (CIBP) is the most common type of moderate and severe cancer-related pain. The current available analgesic treatments for CIBP have adverse effects as well as limited therapeutic effects. Acupuncture is proved effective in pain management as a safe alternative therapy. We evaluated the analgesic effect of acupuncture in treatment of cancer pain and try to explore the underlying analgesic mechanisms. Nude mice were inoculated with cancer cells into the left distal femur to establish cancer pain model. Electroacupuncture (EA) treatment was applied for the xenograft animals. Pain behaviors of mice were evaluated, followed by the detections of neuropeptide-related and inflammation-related indicators in peripheral and central levels. EA treatment alleviated cancer-induced pain behaviors covering mechanical allodynia, thermal hyperalgesia and spontaneous pain, and also down-regulated immunofluorescence expressions of neuropeptide CGRP and p75 in the skin of affected plantar area in xenograft mice, and inhibited expressions of overexpressed neuropeptide-related and inflammation-related protein in the lumbar spinal cord of xenograft mice. Overall, our findings suggest that EA treatment ameliorated cancer-induced pain behaviors in the mouse xenograft model of cancer pain, possibly through inhibiting the expressions of neuropeptide-related and inflammation-related protein in central level following tumor cell xenografts.


Subject(s)
Cancer Pain , Electroacupuncture , Neoplasms , Neuropeptides , Rats , Humans , Mice , Animals , Cancer Pain/etiology , Cancer Pain/therapy , Cancer Pain/metabolism , Nociception , Mice, Nude , Rats, Sprague-Dawley , Pain/metabolism , Hyperalgesia/complications , Hyperalgesia/therapy , Hyperalgesia/chemically induced , Analgesics/metabolism , Inflammation/metabolism , Spinal Cord/metabolism
15.
J Cardiothorac Surg ; 19(1): 138, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38504265

ABSTRACT

BACKGROUND: Postoperative hyper-inflammation is a frequent event in patients with acute Stanford type A aortic dissection (ATAAD) after surgical repair. This study's objective was to determine which inflammatory biomarkers could be used to make a better formula for identifying postoperative hyper-inflammation, and which risk factors were associated with hyper-inflammation. METHODS: A total of 405 patients were enrolled in this study from October 1, 2020 to April 1, 2023. Of these patients, 124 exhibited poor outcomes. In order to investigate the optimal cut-off values for poor outcomes, logistic and receiver operating characteristic analyses were performed on the following parameters on the first postoperative day: procalcitonin (PCT), C-reactive protein (CRP), interleukin-6 (IL-6), and systemic immune-inflammation index (SII). These cut-off points were used to separate the patients into hyper-inflammatory (n = 52) and control (n = 353) groups. Finally, the logistic were used to find the risk factors of hyper-inflammatory. RESULTS: PCT, CRP, IL-6, and SII were independent risk factors of poor outcomes in the multivariate logistic model. Cut-off points of these biomarkers were 2.18 ng/ml, 49.76 mg/L, 301.88 pg/ml, 2509.96 × 109/L respectively. These points were used to define postoperative hyper-inflammation (OR 2.97, 95% CI 1.35-6.53, P < 0.01). Cardiopulmonary bypass (CPB) > 180 min, and deep hypothermia circulatory arrest (DHCA) > 40 min were the independent risk factors for hyper-inflammation. CONCLUSIONS: PCT > 2.18, CRP > 49.76, IL-6 > 301.88, and SII < 2509.96 could be used to define postoperative hyper-inflammation which increased mortality and morbidity in patients after ATAAD surgery. Based on these findings, we found that CPB > 180 min and DHCA > 40 min were separate risk factors for postoperative hyper-inflammation.


Subject(s)
Aortic Dissection , Interleukin-6 , Humans , Aortic Dissection/surgery , Inflammation , Biomarkers , Risk Factors , Procalcitonin , C-Reactive Protein , Retrospective Studies
16.
Front Oncol ; 14: 1279733, 2024.
Article in English | MEDLINE | ID: mdl-38463231

ABSTRACT

Objective: This study investigates the prognostic significance of inflammatory nutritional scores in patients with locally advanced esophageal squamous cell carcinoma (LA-ESCC) undergoing neoadjuvant chemoimmunotherapy. Methods: A total of 190 LA-ESCC patients were recruited from three medical centers across China. Pre-treatment laboratory tests were utilized to calculate inflammatory nutritional scores. LASSO regression and multivariate logistic regression analyses were conducted to pinpoint predictors of pathological response. Kaplan-Meier and Cox regression analyses were employed to assess disease-free survival (DFS) prognostic factors. Results: The cohort comprised 154 males (81.05%) and 36 females (18.95%), with a median age of 61.4 years. Pathological complete response (pCR) was achieved in 17.38% of patients, while 44.78% attained major pathological response (MPR). LASSO and multivariate logistic regression analyses identified that hemoglobin, albumin, lymphocyte, and platelet (HALP) (P=0.02) as an independent predictors of MPR in LA-ESCC patients receiving neoadjuvant chemoimmunotherapy. Kaplan-Meier and log-rank tests indicated that patients with low HALP, MPR, ypT1-2, ypN0 and, ypTNM I stages had prolonged DFS (P < 0.05). Furthermore, univariate and multivariate Cox regression analyses underscored HALP (P = 0.019) and ypT (P = 0.029) as independent predictive factors for DFS in ESCC. Conclusion: Our study suggests that LA-ESCC patients with lower pre-treatment HALP scores exhibit improved pathological response and reduced recurrence rate. As a comprehensive index of inflammatory nutritional status, pre-treatment HALP may be a reliable prognostic marker in ESCC patients undergoing neoadjuvant chemoimmunotherapy.

17.
World Neurosurg ; 184: e593-e602, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38325704

ABSTRACT

OBJECTIVE: Timely identification of elderly patients who are at risk of developing intraoperative hypothermia (IH) is imperative to enable appropriate interventions. This study aimed to develop a nomogram for predicting the risk of IH in elderly patients undergoing resection of craniocerebral tumor, and to validate its effectiveness. METHODS: Elderly patients who underwent craniocerebral tumor resection at a large tertiary hospital in eastern China between January 2019 and December 2022 were included (n = 988). The study population was divided into a training set and a validation set by time period. Risk factors identified through the Least Absolute Shrinkage and Selection Operator method and logistic regression analysis were used to establish the nomogram. The model was validated internally by Bootstrap method and externally by validation set through receiver operating characteristic curve analysis, Hosmer-Lemeshow test, and decision curve analysis. RESULTS: A total of 273 (27.6%) patients developed IH. Duration of anesthesia (P < 0.001), blood loss (P < 0.001), preoperative temperature (P < 0.001), tumor location (P < 0.001), age (P < 0.05), and mean arterial pressure (P < 0.05) were identified as independent risk factors for IH. A nomogram integrating these 6 factors was constructed. The area under the curve was 0.773 (95% confidence interval: 0.735-0.811) (70.5% specificity and 75.0% sensitivity), indicating good predictive performance. The decision curve analysis demonstrated the clinical benefit of using the nomogram. CONCLUSIONS: Our model showed good performance in identifying elderly patients who are at high risk of developing IH during craniocerebral tumor resection. The nomogram can help inform timely preventive interventions.


Subject(s)
Anesthesia , Hypothermia , Aged , Humans , Hypothermia/etiology , Retrospective Studies , China , Nomograms
18.
Int J Mol Sci ; 25(3)2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38338987

ABSTRACT

Hepcidin is upregulated by increased body iron stores and inflammatory cytokines. It is associated with cardiovascular events, arterial stiffness, and increased iron accumulation in human atheroma with hemorrhage. However, it is unknown whether the expression of hepcidin in human carotid plaques is related to plaque severity and whether hepcidin expression differs between men and women. Carotid samples from 58 patients (38 males and 20 females) were immunostained with hepcidin, macrophages, ferritin, and transferrin receptor. Immunocytochemistry of hepcidin was performed on THP-1 macrophages exposed to iron or 7betahydroxycholesterol. Hepcidin expression significantly increases with the progression of human atherosclerotic plaques. Plaques of male patients have significantly higher levels of hepcidin. Expressions of hepcidin are significantly correlated with the accumulation of CD68-positive macrophages and transferrin receptor 1 (TfR1) and apoptosis. In vitro, hepcidin is significantly increased in macrophages exposed to iron and moderately increased following 7-oxysterol treatment. In the cultured cells, suppression of hepcidin protected against macrophage cell death, lysosomal membrane permeabilization, and oxidative stress. Hepcidin may play a crucial role in the development and progression of atherosclerosis. The differential expression of hepcidin in male and female patients and its significant correlations with plaque severity, highlight the potential of hepcidin as a biomarker for risk stratification and therapeutic targeting in atherosclerosis.


Subject(s)
Atherosclerosis , Plaque, Atherosclerotic , Female , Humans , Male , Atherosclerosis/metabolism , Hepcidins/genetics , Hepcidins/metabolism , Iron/metabolism , Plaque, Atherosclerotic/genetics , Plaque, Atherosclerotic/metabolism , Receptors, Transferrin/genetics , Sex Characteristics
19.
J Inflamm Res ; 17: 591-601, 2024.
Article in English | MEDLINE | ID: mdl-38318242

ABSTRACT

Background: Sivelestat, a neutrophil elastase inhibitor, is specifically developed to mitigate the occurrence of acute lung injury (ALI) in individuals who are undergoing cardiovascular surgery. However, its impact on patients who are at a heightened risk of developing ALI after scheduled cardiac surgery has yet to be determined. In order to address this knowledge gap, we undertook a study to assess the efficacy of sivelestat in protecting the lungs of these patients. Methods: We conducted a prospective cohort study involving 718 patients who were at high risk of developing postoperative acute lung injury (ALI) and underwent scheduled cardiac surgery between April 25th, 2022, and September 7th, 2023. Among them, 52 patients received sivelestat (administered at a dosage of 0.2mg/kg/h for 3 days), while 666 patients served as controls, not receiving sivelestat. The control conditions were the same for all patients, including ventilation strategy, extubating time, and fluid management. Subsequently, a propensity-score matched cohort was established, consisting of 40 patients in both the sivelestat and control groups. The primary outcome measure encompassed a composite of adverse outcomes, including 30-day mortality, ALI, acute respiratory distress syndrome (ARDS), and others. Secondary outcomes assessed included pneumonia, ventricular arrhythmias, mechanical ventilation (MV) time, and more. Results: After conducting propensity matching in our study, we observed that there were no significant differences in 30-day mortality between the sivelestat and control groups (0% vs 2.5%, P=0.32). However, the use of sivelestat exhibited a significant reduction in the incidence of acute lung injury/acute respiratory distress syndrome (ALI/ARDS) compared to the control group (0% vs 55%, P<0.01), pneumonia (0 vs 37.5%, P<0.01), MV time (median:8 hours, IQR:4-14.8 hours vs median: 15.2 hours, IQR:14-16.3 hours, P<0.01). Compared to the control group, the sivelestat could significantly decrease white cell count (P<0.01), neutrophile percentage (P<0.01) and C-reactive protein (P<0.01) in the period of postoperative 5 days. Conclusion: The prophylactic administration of sivelestat has shown promising results in reducing the occurrence of acute lung injury/acute respiratory distress syndrome (ALI/ARDS) in patients with a heightened risk of developing these conditions after elective cardiac surgery. Our study findings indicate that sivelestat may provide protective effects by suppressing inflammation triggered by neutrophil activation, thereby safeguarding pulmonary function. Registration: ChiCTR2200059102, https://www.chictr.org.cn/showproj.html?proj=166643.

20.
Heliyon ; 10(2): e24560, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38304808

ABSTRACT

Purpose: To evaluate the ability of computer-aided diagnosis (CAD) system (S-Detect) to identify malignancy in ultrasound (US) -detected BI-RADS 3 breast lesions. Materials and methods: 148 patients with 148 breast lesions categorized as BI-RADS 3 were included in the study between January 2021 and September 2022. The malignancy rate, accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and area under the curve (AUC) were calculated. Results: In this study, 143 breast lesions were found to be benign, and 5 breast lesions were malignant (malignancy rate, 3.4 %, 95 % confidence interval (CI): 0.5-6.3). The malignancy rate rose significantly to 18.2 % (4/22, 95 % CI: 2.1-34.3) in the high-risk group with a "possibly malignant" CAD result (p = 0.017). With a "possibly benign" CAD result, the malignancy rate decreased to 0.8 % (1/126, 95 % CI: 0-2.2) in the low-risk group (p = 0.297). The AUC, sensitivity, specificity, accuracy, PPV, and NPV of the CAD system in BI-RADS 3 breast lesions were 0.837 (95 % CI: 77.7-89.6), 80.0 % (95 % CI: 73.6-86.4), 87.4 % (95 % CI: 82.0-92.7), 87.2 % (95 % CI: 81.8-92.6), 18.2 % (95 % CI: 2.1-34.3) and 99.2 % (95 % CI: 97.8-100.0), respectively. Conclusions: CAD system (S-Detect) enables radiologists to distinguish a high-risk group and a low-risk group among US-detected BI-RADS 3 breast lesions, so that patients in the low-risk group can receive follow-up without anxiety, while those in the high-risk group with a significantly increased malignancy rate should actively receive biopsy to avoid delayed diagnosis of breast cancer.

SELECTION OF CITATIONS
SEARCH DETAIL
...