Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Neuroimmune Pharmacol ; 19(1): 24, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38780885

ABSTRACT

Cornuside has been discovered to improve learning and memory in AD mice, however, its underlying mechanism was not fully understood. In the present study, we established an AD mice model by intracerebroventricular injection of Aß1-42, which were treated with cornuside (3, 10, 30 mg/kg) for 2 weeks. Cornuside significantly ameliorated cognitive function of AD mice in series of behavioral tests, including Morris water maze test, nest building test, novel object recognition test and step-down test. Additionally, cornuside could attenuate neuronal injury, and promote cholinergic synaptic transmission by restoring the level of acetylcholine (ACh) via inhibiting acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), as well as facilitating choline acetyltransferase (ChAT). Furthermore, cornuside inhibited oxidative stress levels amplified as decreased malondialdehyde (MDA), by inhibiting TXNIP expression, improving total anti-oxidative capacity (TAOC), raising activities of superoxide dismutase (SOD) and catalase (CAT). Cornuside also reduced the activation of microglia and astrocytes, decreased the level of proinflammatory factors TNF-α, IL-6, IL-1ß, iNOS and COX2 via interfering RAGE-mediated IKK-IκB-NF-κB phosphorylation. Similar anti-oxidative and anti-inflammatory effects were also found in LPS-stimulated BV2 cells via hampering RAGE-mediated TXNIP activation and NF-κB nuclear translocation. Virtual docking revealed that cornuside could interact with the active pocket of RAGE V domain directly. In conclusion, cornuside could bind to the RAGE directly impeding the interaction of Aß and RAGE, and cut down the expression of TXNIP inhibiting ROS production and oxidative stress, as well as hamper NF-κB p65 mediated the inflammation.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Cognitive Dysfunction , NF-kappa B , Peptide Fragments , Receptor for Advanced Glycation End Products , Signal Transduction , Animals , Mice , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Alzheimer Disease/chemically induced , Amyloid beta-Peptides/toxicity , Amyloid beta-Peptides/metabolism , Peptide Fragments/toxicity , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/chemically induced , Signal Transduction/drug effects , Receptor for Advanced Glycation End Products/metabolism , NF-kappa B/metabolism , Male , Oxidative Stress/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...