Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Biomed Opt Express ; 15(3): 1515-1527, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38495695

ABSTRACT

Early detection of breast cancer can significantly improve patient outcomes and five-year survival in clinical screening. Dynamic optical breast imaging (DOBI) technology reflects the blood oxygen metabolism level of tumors based on the theory of tumor neovascularization, which offers a technical possibility for early detection of breast cancer. In this paper, we propose an intelligent scoring system integrating DOBI features assessment and a malignancy score grading reporting system for early detection of breast cancer. Specifically, we build six intelligent feature definition models to depict characteristics of regions of interest (ROIs) from location, space, time and context separately. Similar to the breast imaging-reporting and data system (BI-RADS), we conclude the malignancy score grading reporting system to score and evaluate ROIs as follows: Malignant (≥ 80 score), Likely Malignant (60-80 score), Intermediate (35-60 score), Likely Benign (10-35 score), and Benign (<10 score). This system eliminates the influence of subjective physician judgments on the assessment of the malignant probability of ROIs. Extensive experiments on 352 Chinese patients demonstrate the effectiveness of the proposed system compared to state-of-the-art methods.

2.
IEEE/ACM Trans Comput Biol Bioinform ; 20(5): 3020-3032, 2023.
Article in English | MEDLINE | ID: mdl-37390006

ABSTRACT

Single nucleotide variants (SNVs) are very common in human genome and pose a significant effect on cellular proliferation and tumorigenesis in various cancers. Somatic variant and germline variant are the two forms of SNVs. They are the major drivers of inherited diseases and acquired tumors respectively. A reasonable analysis of the next generation sequencing data profiles from cancer genomes could provide crucial information for cancer diagnosis and treatment. Accurate detection of SNVs and distinguishing the two forms are still considered challenging tasks in cancer analysis. Herein, we propose a new approach, LDSSNV, to detect somatic SNVs without matched normal samples. LDSSNV predicts SNVs by training the XGboost classifier on a concise combination of features and distinguishes the two forms based on linkage disequilibrium which is a trait between germline mutations. LDSSNV provides two modes to distinguish the somatic variants from germline variants, the single-mode and multiple-mode by respectively using a single tumor sample and multiple tumor samples. The performance of the proposed method is assessed on both simulation data and real sequencing datasets. The analysis shows that the LDSSNV method outperforms competing methods and can become a robust and reliable tool for analyzing tumor genome variation.

3.
Biomed Res Int ; 2022: 7196040, 2022.
Article in English | MEDLINE | ID: mdl-35345526

ABSTRACT

Structural variation (SV) is an important type of genome variation and confers susceptibility to human cancer diseases. Systematic analysis of SVs has become a crucial step for the exploration of mechanisms and precision diagnosis of cancers. The central point is how to accurately detect SV breakpoints by using next-generation sequencing (NGS) data. Due to the cooccurrence of multiple types of SVs in the human genome and the intrinsic complexity of SVs, the discrimination of SV breakpoint types is a challenging task. In this paper, we propose a convolutional neural network- (CNN-) based approach, called svBreak, for the detection and discrimination of common types of SV breakpoints. The principle of svBreak is that it extracts a set of SV-related features for each genome site from the sequencing reads aligned to the reference genome and establishes a data matrix where each row represents one site and each column represents one feature and then adopts a CNN model to analyze such data matrix for the prediction of SV breakpoints. The performance of the proposed approach is tested via simulation studies and application to a real sequencing sample. The experimental results demonstrate the merits of the proposed approach when compared with existing methods. Thus, svBreak can be expected to be a supplementary approach in the field of SV analysis in human tumor genomes.


Subject(s)
Genome, Human , High-Throughput Nucleotide Sequencing , Genome, Human/genetics , Humans , Neural Networks, Computer , Sequence Analysis, DNA/methods
5.
Front Genet ; 13: 1084974, 2022.
Article in English | MEDLINE | ID: mdl-36733945

ABSTRACT

Copy number variation (CNV) is one of the main structural variations in the human genome and accounts for a considerable proportion of variations. As CNVs can directly or indirectly cause cancer, mental illness, and genetic disease in humans, their effective detection in humans is of great interest in the fields of oncogene discovery, clinical decision-making, bioinformatics, and drug discovery. The advent of next-generation sequencing data makes CNV detection possible, and a large number of CNV detection tools are based on next-generation sequencing data. Due to the complexity (e.g., bias, noise, alignment errors) of next-generation sequencing data and CNV structures, the accuracy of existing methods in detecting CNVs remains low. In this work, we design a new CNV detection approach, called shortest path-based Copy number variation (SPCNV), to improve the detection accuracy of CNVs. SPCNV calculates the k nearest neighbors of each read depth and defines the shortest path, shortest path relation, and shortest path cost sets based on which further calculates the mean shortest path cost of each read depth and its k nearest neighbors. We utilize the ratio between the mean shortest path cost for each read depth and the mean of the mean shortest path cost of its k nearest neighbors to construct a relative shortest path score formula that is able to determine a score for each read depth. Based on the score profile, a boxplot is then applied to predict CNVs. The performance of the proposed method is verified by simulation data experiments and compared against several popular methods of the same type. Experimental results show that the proposed method achieves the best balance between recall and precision in each set of simulated samples. To further verify the performance of the proposed method in real application scenarios, we then select real sample data from the 1,000 Genomes Project to conduct experiments. The proposed method achieves the best F1-scores in almost all samples. Therefore, the proposed method can be used as a more reliable tool for the routine detection of CNVs.

6.
Biology (Basel) ; 10(7)2021 Jun 25.
Article in English | MEDLINE | ID: mdl-34202028

ABSTRACT

Copy number variation (CNV) is a common type of structural variation in the human genome. Accurate detection of CNVs from tumor genomes can provide crucial information for the study of tumor genesis and cancer precision diagnosis. However, the contamination of normal genomes in tumor genomes and the crude profiles of the read depth make such a task difficult. In this paper, we propose an alternative approach, called CIRCNV, for the detection of CNVs from sequencing data. CIRCNV is an extension of our previously developed method CNV-LOF, which uses local outlier factors to predict CNVs. Comparatively, CIRCNV can be performed on individual tumor samples and has the following two new features: (1) it transfers the read depth profile from a line shape to a circular shape via a polar coordinate transformation, in order to improve the efficiency of the read depth (RD) profile for the detection of CNVs; and (2) it performs a second round of CNV declaration based on the truth circular RD profile, which is recovered by estimating tumor purity. We test and validate the performance of CIRCNV based on simulation and real sequencing data and perform comparisons with several peer methods. The results demonstrate that CIRCNV can obtain superior performance in terms of sensitivity and precision. We expect that our proposed method will be a supplement to existing methods and become a routine tool in the field of variation analysis of tumor genomes.

7.
Front Genet ; 12: 642473, 2021.
Article in English | MEDLINE | ID: mdl-34163521

ABSTRACT

Copy number variation (CNV) is a genomic mutation that plays an important role in tumor evolution and tumor genesis. Accurate detection of CNVs from next-generation sequencing (NGS) data is still a challenging task due to artifacts such as uneven mapped reads and unbalanced amplitudes of gains and losses. This study proposes a new approach called HBOS-CNV to detect CNVs from NGS data. The central point of HBOS-CNV is that it uses a new statistic, the histogram-based outlier score (HBOS), to evaluate the fluctuation of genome bins to determine those of changed copy numbers. In comparison with existing statistics in the evaluation of CNVs, HBOS is a non-linearly transformed value from the observed read depth (RD) value of each genome bin, having the potential ability to relieve the effects resulted from the above artifacts. In the calculation of HBOS values, a dynamic width histogram is utilized to depict the density of bins on the genome being analyzed, which can reduce the effects of noises partially contributed by mapping and sequencing errors. The evaluation of genome bins using such a new statistic can lead to less extremely significant CNVs having a high probability of detection. We evaluated this method using a large number of simulation datasets and compared it with four existing methods (CNVnator, CNV-IFTV, CNV-LOF, and iCopyDav). The results demonstrated that our proposed method outperforms the others in terms of sensitivity, precision, and F1-measure. Furthermore, we applied the proposed method to a set of real sequencing samples from the 1000 Genomes Project and determined a number of CNVs with biological meanings. Thus, the proposed method can be regarded as a routine approach in the field of genome mutation analysis for cancer samples.

8.
Zool Res ; 42(2): 246-249, 2021 Mar 18.
Article in English | MEDLINE | ID: mdl-33709636

ABSTRACT

Somatic mutations are a large category of genetic variations, which play an essential role in tumorigenesis. Detection of somatic single nucleotide variants (SNVs) could facilitate downstream analysis of tumorigenesis. Many computational methods have been developed to detect SNVs, but most require normal matched samples to differentiate somatic SNVs from the normal state, which can be difficult to obtain. Therefore, developing new approaches for detecting somatic SNVs without matched samples are crucial. In this work, we detected somatic mutations from individual tumor samples based on a novel machine learning approach, svmSomatic, using next-generation sequencing (NGS) data. In addition, as somatic SNV detection can be impacted by multiple mutations, with germline mutations and co-occurrence of copy number variations (CNVs) common in organisms, we used the novel approach to distinguish somatic and germline mutations based on the NGS data from individual tumor samples. In summary, svmSomatic: (1) considers the influence of CNV co-occurrence in detecting somatic mutations; and (2) trains a support vector machine algorithm to distinguish between somatic and germline mutations, without requiring normal matched samples. We further tested and compared svmSomatic with other common methods. Results showed that svmSomatic performance, as measured by F1-score, was significantly better than that of others using both simulation and real NGS data.


Subject(s)
Machine Learning , Mutation/genetics , Neoplasms/genetics , Algorithms , Animals , Computational Biology/methods , DNA Copy Number Variations , Gene Expression Regulation, Neoplastic , High-Throughput Nucleotide Sequencing/methods , Humans , Neoplasms/metabolism
9.
IEEE/ACM Trans Comput Biol Bioinform ; 18(6): 2692-2701, 2021.
Article in English | MEDLINE | ID: mdl-32086221

ABSTRACT

Single nucleotide variant (SNV) plays an important role in cellular proliferation and tumorigenesis in various types of human cancer. Next-generation sequencing (NGS) has provided high-throughput data at an unprecedented resolution to predict SNVs. Currently, there exist many computational methods for either germline or somatic SNV discovery from NGS data, but very few of them are versatile enough to adapt to any situations. In the absence of matched normal samples, the prediction of somatic SNVs from single-tumor samples becomes considerably challenging, especially when the tumor purity is unknown. Here, we propose a new approach, STIC, to predict somatic SNVs and estimate tumor purity from NGS data without matched normal samples. The main features of STIC include: (1) extracting a set of SNV-relevant features on each site and training the BP neural network algorithm on the features to predict SNVs; (2) creating an iterative process to distinguish somatic SNVs from germline ones by disturbing allele frequency; and (3) establishing a reasonable relationship between tumor purity and allele frequencies of somatic SNVs to accurately estimate the purity. We quantitatively evaluate the performance of STIC on both simulation and real sequencing datasets, the results of which indicate that STIC outperforms competing methods.


Subject(s)
Genome, Human/genetics , Genomics/methods , Neoplasms/genetics , Polymorphism, Single Nucleotide/genetics , Algorithms , High-Throughput Nucleotide Sequencing , Humans , Sequence Analysis, DNA
10.
IEEE/ACM Trans Comput Biol Bioinform ; 18(5): 1893-1901, 2021.
Article in English | MEDLINE | ID: mdl-31751246

ABSTRACT

Next generation sequencing technology has led to the development of methods for the detection of novel sequence insertions (nsINS). Multiple signatures from short reads are usually extracted to improve nsINS detection performance. However, characterization of nsINSs larger than the mean insert size is still challenging. This article presents a new method, ERINS, to detect nsINS contents and genotypes of full spectrum range size. It integrates the features of structural variations and mapping states of split reads to find nsINS breakpoints, and then adopts a left-most mapping strategy to infer nsINS content by iteratively extending the standard reference at each breakpoint. Finally, it realigns all reads to the extended reference and infers nsINS genotypes through statistical testing on read counts. We test and validate the performance of ERINS on simulation and real sequencing datasets. The simulation experimental results demonstrate that it outperforms several peer methods with respect to sensitivity and precision. The real data application indicates that ERINS obtains high consistent results with those of previously reported and detects nsINSs over 200 base pairs that many other methods fail. In conclusion, ERINS can be used as a supplement to existing tools and will become a routine approach for characterizing nsINSs.


Subject(s)
Algorithms , Genomics/methods , High-Throughput Nucleotide Sequencing/methods , INDEL Mutation/genetics , Sequence Analysis, DNA/methods , Genome, Human/genetics , Humans
11.
IEEE/ACM Trans Comput Biol Bioinform ; 18(5): 1811-1820, 2021.
Article in English | MEDLINE | ID: mdl-31880558

ABSTRACT

Copy number variation (CNV) is a major type of genomic structural variations that play an important role in human disorders. Next generation sequencing (NGS) has fueled the advancement in algorithm design to detect CNVs at base-pair resolution. However, accurate detection of CNVs of low amplitudes remains a challenging task. This paper proposes a new computational method, CNV-LOF, to identify CNVs of full-range amplitudes from NGS data. CNV-LOF is distinctly different from traditional methods, which mainly consider aberrations from a global perspective and rely on some assumed distribution of NGS read depths. In contrast, CNV-LOF takes a local view on the read depths and assigns an outlier factor to each genome segment. With the outlier factor profile, CNV-LOF uses a boxplot procedure to declare CNVs without the reliance of any distribution assumptions. Simulation experiments indicate that CNV-LOF outperforms five existing methods with respect to F1-measure, sensitivity, and precision. CNV-LOF is further validated on real sequencing samples, yielding highly consistent results with peer methods. CNV-LOF is able to detect CNVs of low and moderate amplitudes where the other existing methods fail, and it is expected to become a routine approach for the discovery of novel CNVs on whole sequencing genome.


Subject(s)
DNA Copy Number Variations/genetics , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, DNA/methods , Algorithms , Genome, Human/genetics , Humans
12.
Article in English | MEDLINE | ID: mdl-31180897

ABSTRACT

Accurate detection of copy number variations (CNVs) from short-read sequencing data is challenging due to the uneven distribution of reads and the unbalanced amplitudes of gains and losses. The direct use of read depths to measure CNVs tends to limit performance. Thus, robust computational approaches equipped with appropriate statistics are required to detect CNV regions and boundaries. This study proposes a new method called CNV_IFTV to address this need. CNV_IFTV assigns an anomaly score to each genome bin through a collection of isolation trees. The trees are trained based on isolation forest algorithm through conducting subsampling from measured read depths. With the anomaly scores, CNV_IFTV uses a total variation model to smooth adjacent bins, leading to a denoised score profile. Finally, a statistical model is established to test the denoised scores for calling CNVs. CNV_IFTV is tested on both simulated and real data in comparison to several peer methods. The results indicate that the proposed method outperforms the peer methods. CNV_IFTV is a reliable tool for detecting CNVs from short-read sequencing data even for low-level coverage and tumor purity. The detection results on tumor samples can aid to evaluate known cancer genes and to predict target drugs for disease diagnosis.


Subject(s)
Algorithms , Computational Biology/methods , DNA Copy Number Variations/genetics , Models, Statistical , Databases, Genetic , Decision Trees , Genome, Human/genetics , High-Throughput Nucleotide Sequencing , Humans
13.
Front Cell Dev Biol ; 9: 796249, 2021.
Article in English | MEDLINE | ID: mdl-35004691

ABSTRACT

Copy number variation (CNV) is a well-known type of genomic mutation that is associated with the development of human cancer diseases. Detection of CNVs from the human genome is a crucial step for the pipeline of starting from mutation analysis to cancer disease diagnosis and treatment. Next-generation sequencing (NGS) data provides an unprecedented opportunity for CNVs detection at the base-level resolution, and currently, many methods have been developed for CNVs detection using NGS data. However, due to the intrinsic complexity of CNVs structures and NGS data itself, accurate detection of CNVs still faces many challenges. In this paper, we present an alternative method, called KNNCNV (K-Nearest Neighbor based CNV detection), for the detection of CNVs using NGS data. Compared to current methods, KNNCNV has several distinctive features: 1) it assigns an outlier score to each genome segment based solely on its first k nearest-neighbor distances, which is not only easy to extend to other data types but also improves the power of discovering CNVs, especially the local CNVs that are likely to be masked by their surrounding regions; 2) it employs the variational Bayesian Gaussian mixture model (VBGMM) to transform these scores into a series of binary labels without a user-defined threshold. To evaluate the performance of KNNCNV, we conduct both simulation and real sequencing data experiments and make comparisons with peer methods. The experimental results show that KNNCNV could derive better performance than others in terms of F1-score.

14.
Front Genet ; 11: 569227, 2020.
Article in English | MEDLINE | ID: mdl-33329705

ABSTRACT

Copy number variations (CNVs) are significant causes of many human cancers and genetic diseases. The detection of CNVs has become a common method by which to analyze human diseases using next-generation sequencing (NGS) data. However, effective detection of insignificant CNVs is still a challenging task. In this study, we propose a new detection method, RKDOSCNV, to meet the need. RKDOSCNV uses kernel density estimation method to evaluate the local kernel density distribution of each read depth segment (RDS) based on an expanded nearest neighbor (k-nearest neighbors, reverse nearest neighbors, and shared nearest neighbors of each RDS) data set, and assigns a relative kernel density outlier score (RKDOS) for each RDS. According to the RKDOS profile, RKDOSCNV predicts the candidate CNVs by choosing a reasonable threshold, which it uses split read approach to correct the boundaries of candidate CNVs. The performance of RKDOSCNV is assessed by comparing it with several current popular methods via experiments with simulated and real data at different tumor purity levels. The experimental results verify that the performance of RKDOSCNV is superior to that of several other methods. In summary, RKDOSCNV is a simple and effective method for the detection of CNVs from whole genome sequencing (WGS) data, especially for samples with low tumor purity.

15.
Front Genet ; 11: 603093, 2020.
Article in English | MEDLINE | ID: mdl-33329748

ABSTRACT

Next-generation sequencing (NGS) technologies have provided great opportunities to analyze pathogenic microbes with high-resolution data. The main goal is to accurately detect microbial composition and abundances in a sample. However, high similarity among sequences from different species and the existence of sequencing errors pose various challenges. Numerous methods have been developed for quantifying microbial composition and abundance, but they are not versatile enough for the analysis of samples with mixtures of noise. In this paper, we propose a new computational method, PGMicroD, for the detection of pathogenic microbial composition in a sample using NGS data. The method first filters the potentially mistakenly mapped reads and extracts multiple species-related features from the sequencing reads of 16S rRNA. Then it trains an Support Vector Machine classifier to predict the microbial composition. Finally, it groups all multiple-mapped sequencing reads into the references of the predicted species to estimate the abundance for each kind of species. The performance of PGMicroD is evaluated based on both simulation and real sequencing data and is compared with several existing methods. The results demonstrate that our proposed method achieves superior performance. The software package of PGMicroD is available at https://github.com/BDanalysis/PGMicroD.

16.
Front Genet ; 11: 924, 2020.
Article in English | MEDLINE | ID: mdl-32849857

ABSTRACT

Tandem duplication (TD) is an important type of structural variation (SV) in the human genome and has biological significance for human cancer evolution and tumor genesis. Accurate and reliable detection of TDs plays an important role in advancing early detection, diagnosis, and treatment of disease. The advent of next-generation sequencing technologies has made it possible for the study of TDs. However, detection is still challenging due to the uneven distribution of reads and the uncertain amplitude of TD regions. In this paper, we present a new method, DINTD (Detection and INference of Tandem Duplications), to detect and infer TDs using short sequencing reads. The major principle of the proposed method is that it first extracts read depth and mapping quality signals, then uses the DBSCAN (Density-Based Spatial Clustering of Applications with Noise) algorithm to find the possible TD regions. The total variation penalized least squares model is fitted with read depth and mapping quality signals to denoise signals. A 2D binary search tree is used to search the neighbor points effectively. To further identify the exact breakpoints of the TD regions, split-read signals are integrated into DINTD. The experimental results of DINTD on simulated data sets showed that DINTD can outperform other methods for sensitivity, precision, F1-score, and boundary bias. DINTD is further validated on real samples, and the experiment results indicate that it is consistent with other methods. This study indicates that DINTD can be used as an effective tool for detecting TDs.

17.
Front Genet ; 11: 434, 2020.
Article in English | MEDLINE | ID: mdl-32499814

ABSTRACT

Copy number variation (CNV) is a very important phenomenon in tumor genomes and plays a significant role in tumor genesis. Accurate detection of CNVs has become a routine and necessary procedure for a deep investigation of tumor cells and diagnosis of tumor patients. Next-generation sequencing (NGS) technique has provided a wealth of data for the detection of CNVs at base-pair resolution. However, such task is usually influenced by a number of factors, including GC-content bias, sequencing errors, and correlations among adjacent positions within CNVs. Although many existing methods have dealt with some of these artifacts by designing their own strategies, there is still a lack of comprehensive consideration of all the factors. In this paper, we propose a new method, MFCNV, for an accurate detection of CNVs from NGS data. Compared with existing methods, the characteristics of the proposed method include the following: (1) it makes a full consideration of the intrinsic correlations among adjacent positions in the genome to be analyzed, (2) it calculates read depth, GC-content bias, base quality, and correlation value for each genome bin and combines them as multiple features for the evaluation of genome bins, and (3) it addresses the joint effect among the factors via training a neural network algorithm for the prediction of CNVs. We test the performance of the MFCNV method by using simulation and real sequencing data and make comparisons with several peer methods. The results demonstrate that our method is superior to other methods in terms of sensitivity, precision, and F1-score and can detect many CNVs that other methods have not discovered. MFCNV is expected to be a complementary tool in the analysis of mutations in tumor genomes and can be extended to be applied to the analysis of single-cell sequencing data.

18.
Front Genet ; 11: 458, 2020.
Article in English | MEDLINE | ID: mdl-32425990

ABSTRACT

Inference of absolute copy numbers in tumor genomes is one of the key points in the study of tumor genesis. However, the mixture of tumor and normal cells poses a big challenge to this task. Accurate estimation of tumor purity (i.e., the fraction of tumor cells) is a necessary step to solve this problem. In this paper, we propose a new approach, AITAC, to accurately infer tumor purity and absolute copy numbers in a tumor sample by using high-throughput sequencing (HTS) data. In contrast to many existing algorithms for estimating tumor purity, which usually rely on pre-detected mutation genotypes (heterogeneity and homogeneity), AITAC just requires read depths (RDs) observed at the regions with copy number losses. AITAC creates a non-linear model to correlate tumor purity, observed and expected RDs. It adopts an exhaustive search strategy to scan tumor purity in a wide range, and chooses the tumor purity that minimizes the deviation between observed RDs and expected ones as the optimal solution. We apply the proposed approach to both simulation and real sequencing data sets and demonstrate its performance by comparing with two classical approaches. AITAC is freely available at https://github.com/BDanalysis/aitac and can be expected to become a useful approach for researchers to analyze copy numbers in cancer genome.

19.
BMC Bioinformatics ; 21(1): 97, 2020 Mar 05.
Article in English | MEDLINE | ID: mdl-32138645

ABSTRACT

BACKGROUND: With the rapid development of whole exome sequencing (WES), an increasing number of tools are being proposed for copy number variation (CNV) detection based on this technique. However, no comprehensive guide is available for the use of these tools in clinical settings, which renders them inapplicable in practice. To resolve this problem, in this study, we evaluated the performances of four WES-based CNV tools, and established a guideline for the recommendation of a suitable tool according to the application requirements. RESULTS: In this study, first, we selected four WES-based CNV detection tools: CoNIFER, cn.MOPS, CNVkit and exomeCopy. Then, we evaluated their performances in terms of three aspects: sensitivity and specificity, overlapping consistency and computational costs. From this evaluation, we obtained four main results: (1) The sensitivity increases and subsequently stabilizes as the coverage or CNV size increases, while the specificity decreases. (2) CoNIFER performs better for CNV insertions than for CNV deletions, while the remaining tools exhibit the opposite trend. (3) CoNIFER, cn.MOPS and CNVkit realize satisfactory overlapping consistency, which indicates their results are trustworthy. (4) CoNIFER has the best space complexity and cn.MOPS has the best time complexity among these four tools. Finally, we established a guideline for tools' usage according to these results. CONCLUSION: No available tool performs excellently under all conditions; however, some tools perform excellently in some scenarios. Users can obtain a CNV tool recommendation from our paper according to the targeted CNV size, the CNV type or computational costs of their projects, as presented in Table 1, which is helpful even for users with limited knowledge of computer science.


Subject(s)
DNA Copy Number Variations , Exome Sequencing/methods , Algorithms , Exome/genetics , Humans , Software/economics
20.
Front Genet ; 11: 632311, 2020.
Article in English | MEDLINE | ID: mdl-33519925

ABSTRACT

Copy number variation (CNV) is a common type of structural variations in human genome and confers biological meanings to human complex diseases. Detection of CNVs is an important step for a systematic analysis of CNVs in medical research of complex diseases. The recent development of next-generation sequencing (NGS) platforms provides unprecedented opportunities for the detection of CNVs at a base-level resolution. However, due to the intrinsic characteristics behind NGS data, accurate detection of CNVs is still a challenging task. In this article, we propose a new density peak-based method, called dpCNV, for the detection of CNVs from NGS data. The algorithm of dpCNV is designed based on density peak clustering algorithm. It extracts two features, i.e., local density and minimum distance, from sequencing read depth (RD) profile and generates a two-dimensional data. Based on the generated data, a two-dimensional null distribution is constructed to test the significance of each genome bin and then the significant genome bins are declared as CNVs. We test the performance of the dpCNV method on a number of simulated datasets and make comparison with several existing methods. The experimental results demonstrate that our proposed method outperforms others in terms of sensitivity and F1-score. We further apply it to a set of real sequencing samples and the results demonstrate the validity of dpCNV. Therefore, we expect that dpCNV can be used as a supplementary to existing methods and may become a routine tool in the field of genome mutation analysis.

SELECTION OF CITATIONS
SEARCH DETAIL
...