Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Technol Cancer Res Treat ; 21: 15330338221085358, 2022.
Article in English | MEDLINE | ID: mdl-35262422

ABSTRACT

Purpose: To overcome the imaging artifacts and Hounsfield unit inaccuracy limitations of cone-beam computed tomography, a conditional generative adversarial network is proposed to synthesize high-quality computed tomography-like images from cone-beam computed tomography images. Methods: A total of 120 paired cone-beam computed tomography and computed tomography scans of patients with head and neck cancer who were treated during January 2019 and December 2020 retrospectively collected; the scans of 90 patients were assembled into training and validation datasets, and the scans of 30 patients were used in testing datasets. The proposed method integrates a U-Net backbone architecture with residual blocks into a conditional generative adversarial network framework to learn a mapping from cone-beam computed tomography images to pair planning computed tomography images. The mean absolute error, root-mean-square error, structural similarity index, and peak signal-to-noise ratio were used to assess the performance of this method compared with U-Net and CycleGAN. Results: The synthesized computed tomography images produced by the conditional generative adversarial network were visually similar to planning computed tomography images. The mean absolute error, root-mean-square error, structural similarity index, and peak signal-to-noise ratio calculated from test images generated by conditional generative adversarial network were all significantly different than CycleGAN and U-Net. The mean absolute error, root-mean-square error, structural similarity index, and peak signal-to-noise ratio values between the synthesized computed tomography and the reference computed tomography were 16.75 ± 11.07 Hounsfield unit, 58.15 ± 28.64 Hounsfield unit, 0.92 ± 0.04, and 30.58 ± 3.86 dB in conditional generative adversarial network, 20.66 ± 12.15 Hounsfield unit, 66.53 ± 29.73 Hounsfield unit, 0.90 ± 0.05, and 29.29 ± 3.49 dB in CycleGAN, and 16.82 ± 10.99 Hounsfield unit, 58.68 ± 28.34 Hounsfield unit, 0.92 ± 0.04, and 30.48 ± 3.83 dB in U-Net, respectively. Conclusions: The synthesized computed tomography generated from the cone-beam computed tomography-based conditional generative adversarial network method has accurate computed tomography numbers while keeping the same anatomical structure as cone-beam computed tomography. It can be used effectively for quantitative applications in radiotherapy.


Subject(s)
Head and Neck Neoplasms , Spiral Cone-Beam Computed Tomography , Cone-Beam Computed Tomography/methods , Head and Neck Neoplasms/diagnostic imaging , Head and Neck Neoplasms/radiotherapy , Humans , Image Processing, Computer-Assisted/methods , Radiotherapy Planning, Computer-Assisted/methods , Retrospective Studies
2.
Mol Biotechnol ; 50(1): 8-17, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21505948

ABSTRACT

Heme oxygenase-1 (HO1) is a heme-catabolizing enzyme induced by a variety of stress conditions. This article described the cloning and characterization of BrHO1 gene which codes for a putative HO1 from Chinese cabbage (Brassica rapa subsp. pekinensis). BrHO1 consists of three exons and encodes a protein precursor of 32.3 kD with a putative N-terminal plastid transit peptide. The amino acid sequence of BrHO1 was 84% similar to Arabidopsis counterpart HY1. The three-dimensional structure of BrHO1 showed a high degree of structural conservation compared with the known HO1 crystal structures. Phylogenetic analysis revealed that BrHO1 clearly grouped with the HO1-like sequences. The recombinant BrHO1 protein expressed in Escherichia coli was active in the conversion of heme to biliverdin IXα (BV). Furthermore, the results of subcellular localization of BrHO1 demonstrated that BrHO1 gene product was most likely localized in the chloroplasts. BrHO1 was differently expressed in all tested tissues and could be induced upon osmotic and salinity stresses, cadmium (Cd) exposure, hydrogen peroxide (H(2)O(2)), and hemin treatments. Together, the results suggested that BrHO1 plays an important role in abiotic stress responses.


Subject(s)
Brassica rapa/enzymology , Heme Oxygenase-1/isolation & purification , Heme Oxygenase-1/metabolism , Amino Acid Sequence , Biliverdine/metabolism , Brassica rapa/genetics , Chloroplasts/enzymology , Cloning, Molecular , Escherichia coli/genetics , Escherichia coli/metabolism , Heat-Shock Response , Heme/metabolism , Heme Oxygenase-1/chemistry , Heme Oxygenase-1/genetics , Hemin/pharmacology , Hydrogen Peroxide/pharmacology , Molecular Sequence Data , Phylogeny , Sequence Alignment , Sequence Analysis, DNA
3.
Plant J ; 66(2): 280-92, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21205037

ABSTRACT

In Arabidopsis thaliana, a family of four genes (HY1, HO2, HO3 and HO4) encode haem oxygenase (HO), and play a major role in phytochrome chromophore biosynthesis. To characterize the contribution of the various haem oxygenase isoforms involved in salt acclimation, the effects of NaCl on seed germination and primary root growth in Arabidopsis wild-type and four HO mutants (hy1-100, ho2, ho3 and ho4) were compared. Among the four HO mutants, hy1-100 displayed maximal sensitivity to salinity and showed no acclimation response, whereas plants over-expressing HY1 (35S:HY1) exhibited tolerance characteristics. Mild salt stress stimulated biphasic increases in RbohD transcripts and production of reactive oxygen species (ROS) (peaks I and II) in wild-type. ROS peak I-mediated HY1 induction and subsequent salt acclimation were observed, but only ROS peak I was seen in the hy1-100 mutant. A subsequent test confirmed the causal relationship of salt acclimation with haemin-induced HY1 expression and RbohD-derived ROS peak II formation. In atrbohD mutants, haemin pre-treatment resulted in induction of HY1 expression, but no similar response was seen in hy1-100, and no ROS peak II or subsequent salt acclimatory responses were observed. Together, the above findings suggest that HY1 plays an important role in salt acclimation signalling, and requires participation of RbohD-derived ROS peak II.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Heme Oxygenase (Decyclizing)/metabolism , Reactive Oxygen Species/metabolism , Acclimatization , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant , Heme Oxygenase (Decyclizing)/genetics , Mutagenesis, Insertional , NADPH Oxidases/genetics , NADPH Oxidases/metabolism , Plant Roots/enzymology , Plant Roots/genetics , Plants, Genetically Modified/enzymology , Plants, Genetically Modified/genetics , Salinity , Salt-Tolerant Plants/enzymology , Salt-Tolerant Plants/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...