Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 162
Filter
Add more filters










Publication year range
1.
J Hazard Mater ; 469: 133806, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38430599

ABSTRACT

Metal-free environmental-friendly and cost-effective catalysts for periodate (PI) activation are crucial to popularize their application for micropollutant removal in water. Herein, we report that carbon-doped boron nitride (C-BN) can efficiently activate PI to degrade acetaminophen under very low oxidant doses (40 µM) and over a relatively wide pH range (3-9). As expected, the significant reduction in periodate addition is likely to be due to the higher chemical utilization efficiency achieved by a non-radical oxidation pathway. This involved two main mechanisms, the electron transfer process mediated by the high-potential metastable C-BN-900-PI* complex and singlet oxygen. In this case, the CO groups and defects on the C-BN surface were identified as key active sites for PI activation. Notably, the prepared C-BN-900 had good cycling performance and the degradation efficiency is recovered after simple annealing. The existence of HCO3- and HA significantly inhibited the reaction, whereas Cl-, SO42-, and NO3- had little effect on the degradation of ACE. Overall, this study provides a new alternative method to regulate the non-radical pathway of boron nitride/periodate system.

2.
J Hazard Mater ; 466: 133442, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38244458

ABSTRACT

Due to the broad interest in using biochar from biomass pyrolysis for the adsorption of heavy metals (HMs) in wastewater, machine learning (ML) has recently been adopted by many researchers to predict the adsorption capacity (η) of HMs on biochar. However, previous studies focused mainly on developing different ML algorithms to increase predictive performance, and no study shed light on engineering features to enhance predictive performance and improve model interpretability and generalizability. Here, based on a dataset widely used in previous ML studies, features of biochar were engineered-elemental compositions of biochar were calculated on mole basis-to improve predictive performance, achieving test R2 of 0.997 for the gradient boosting regression (GBR) model. The elemental ratio feature (H-O-2N)/C, representing the H site links to C (non-active site to HMs), was proposed for the first time to help interpret the GBR model. The (H-O-2N)/C and pH of biochar played essential roles in replacing cation exchange capacity (CEC) for predicting η. Moreover, expanding the coverages of variables by adding cases from references improved the generalizability of the model, and further validation using cases without CEC and specific surface area (R2 0.78) and adsorption experimental results (R2 0.72) proved the ML model desirable. Future studies in this area may take into account algorithm innovation, better description of variables, and higher coverage of variables to further increase the model's generalizability.


Subject(s)
Metals, Heavy , Adsorption , Metals, Heavy/chemistry , Charcoal/chemistry , Machine Learning
3.
Nat Commun ; 14(1): 6740, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37875482

ABSTRACT

The pre-designable structure and unique architectures of covalent organic frameworks (COFs) render them attractive as active and porous medium for water crisis. However, the effect of functional basis with different metrics on the regulation of interfacial behavior in advanced oxidation decontamination remains a significant challenge. In this study, we pre-design and fabricate different molecular interfaces by creating ordered π skeletons, incorporating different pore sizes, and engineering hydrophilic or hydrophobic channels. These synergically break through the adsorption energy barrier and promote inner-surface renewal, achieving a high removal rate for typical antibiotic contaminants (like levofloxacin) by BTT-DATP-COF, compared with BTT-DADP-COF and BTT-DAB-COF. The experimental and theoretical calculations reveal that such functional basis engineering enable the hole-driven levofloxacin oxidation at the interface of BTT fragments to occur, accompanying with electron-mediated oxygen reduction on terphenyl motif to active radicals, endowing it facilitate the balanced extraction of holes and electrons.

4.
J Environ Manage ; 347: 119065, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37801942

ABSTRACT

Metal-organic frameworks (MOFs) are promising adsorbents for the removal of arsenic (As) from wastewater. The As removal efficiency is influenced by several factors, such as the textural properties of MOFs, adsorption conditions, and As species. Examining all of the relevant factors through traditional experiments is challenging. To predict the As adsorption capacities of MOFs toward organic, inorganic, and total As and reveal the adsorption mechanisms, four machine learning-based models were developed, with the adsorption conditions, MOF properties, and characteristics of different As species as inputs. The results demonstrated that the extreme gradient boosting (XGBoost) model exhibited the best predictive performance (test R2 = 0.93-0.96). The validation experiments demonstrated the high accuracy of the inorganic As-based XGBoost model. The feature importance analysis showed that the concentration of As, the surface area of MOFs, and the pH of the solution were the three key factors governing inorganic-As adsorption, while those governing organic-As adsorption were the concentration of As, the pHpzc value of MOFs, and the oxidation state of the metal clusters. The formation of coordination complexes between As and MOFs is possibly the major adsorption mechanism for both inorganic and organic As. However, electrostatic interaction may have a greater effect on organic-As adsorption than on inorganic-As adsorption. Overall, this study provides a new strategy for evaluating As adsorption on MOFs and discovering the underlying decisive factors and adsorption mechanisms, thereby facilitating the investigation of As wastewater treatment.


Subject(s)
Arsenic , Metal-Organic Frameworks , Metal-Organic Frameworks/chemistry , Adsorption , Metals , Machine Learning
5.
Ecotoxicol Environ Saf ; 264: 115435, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37722303

ABSTRACT

Introducing co-catalysts to enhance the activation of cuprous-mediated peroxymonosulfate (PMS) and induce the continuous generation of highly reactive oxygen species is promising. The function, effectiveness, and acceleration mechanism of co-catalysts in the cuprous-mediated PMS activation process were fully explored in this work, which focused on rhodamine B as the target contaminants. The results demonstrated that molybdenum (Mo) powder was a superb co-catalyst, and that the reaction of cuprous-mediated PMS system was carried out by surface Mo species as opposed to Mo ions in the solution. The Cu (II)/Cu(I) cycle was primarily encouraged by the Mo0, which also caused abundant ·HO and 1O2 and minimal SO4·- and ·O2- to be produced from PMS. The Mo/Cu2+/PMS system exhibited high removal efficiency towards typical pollutants, especially ciprofloxacin, methyl orange, malachite green, and crystal violet, with removal rates up to 93%, 99%, 97%, and 92%, respectively. Additionally, this system showed excellent adaptability to complex water environments. After four cycles, the Mo powder retained its properties and morphology, and the target pollutants could still maintain an 82% degradation efficiency. This study provides a basis for enhancing cuprous-mediated PMS activation for wastewater treatment.


Subject(s)
Environmental Pollutants , Peroxides , Powders , Peroxides/chemistry , Reactive Oxygen Species/chemistry , Molybdenum , Environmental Pollutants/chemistry
6.
J Hazard Mater ; 460: 132316, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37634377

ABSTRACT

Assisted wet deposition methods to localize the active phase metal on the carrier surface and prevent atomic aggregation during conventional heat treatment are strongly preferred. Herein, single-atom cobalt catalysts (SA-Co-PCN) with different metal-central content were target-prepared using a combination of impregnation and secondary annealing on polymerized carbon nitride (PCN) through reticular confinement. Fitting the coordination configuration of the Co-N pathway within the first coordination shell according to quantitative EXAFS indicated that the ligancy of Co-N was 4. The removal efficiency of representative micropollutants in the SA-Co-PCN/PMS system achieved 100% within 15 min. The outstanding degradation properties of micropollutants were ascribed to the SA-Co-PCN boosts PMS to a 1O2-dominated system. Moreover, the effects of substituents on the degradation behavior and ecotoxicology of sulfonamides (SAs) in PMS-activated systems were investigated in depth. The combination of DFT theoretical calculations and LC-MS further confirmed that the similar electron-rich sites on the SAs molecules allowed for commonality in the degradation pathway. Both S-N bond and C-S bond fragments became the initial attack and cleavage sites in the series of SAs. Ecotoxicity predictions indicated that most intermediates of SAs exhibited lower acute and chronic toxicity, especially acute toxicity, than the parent compounds. ENVIRONMENTAL IMPLICATION: Assisted wet deposition to localize the active phase metal on the carrier surface allows easy target formation of single-atom cobalt catalysts (SA-Co-PCN), which could boost PMS to a 1O2-dominated system for efficient oxidation of typical micropollutants. The degradation behavior and ecotoxicology of sulfonamides in the SA-Co-PCN/PMS system were investigated in depth, revealing that most intermediates of sulfonamides exhibited lower acute and chronic toxicity, especially acute toxicity, than the parent compounds. This work provides a strategy for the development of facilely prepared single-atom catalysts and contributes to the development and application potential of PMS advanced oxidation technology for water pollution control.

7.
Nat Commun ; 14(1): 5238, 2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37640726

ABSTRACT

Constructing photocatalytically active and stable covalent organic frameworks containing both oxidative and reductive reaction centers remain a challenge. In this study, benzotrithiophene-based covalent organic frameworks with spatially separated redox centers are rationally designed for the photocatalytic production of hydrogen peroxide from water and oxygen without sacrificial agents. The triazine-containing framework demonstrates high selectivity for H2O2 photogeneration, with a yield rate of 2111 µM h-1 (21.11 µmol h-1 and 1407 µmol g-1 h-1) and a solar-to-chemical conversion efficiency of 0.296%. Codirectional charge transfer and large energetic differences between linkages and linkers are verified in the double donor-acceptor structures of periodic frameworks. The active sites are mainly concentrated on the electron-acceptor fragments near the imine bond, which regulate the electron distribution of adjacent carbon atoms to optimally reduce the Gibbs free energy of O2* and OOH* intermediates during the formation of H2O2.

8.
Angew Chem Int Ed Engl ; 62(36): e202309480, 2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37462327

ABSTRACT

Artificial H2 O2 photosynthesis by covalent organic frameworks (COFs) photocatalysts is promising for wastewater treatment. The effect of linkage chemistry of COFs as functional basis to photoelectrochemical properties and photocatalysis remains a significant challenge. In this study, three kinds of azoles-linked COFs including thiazole-linked TZ-COF, oxazole-linked OZ-COF and imidazole-linked IZ-COF were successfully synthesized. More accessible channels of charge transfer were constructed in TZ-COF via the donor-π-acceptor structure between thiazole linkage and pyrene linker, leading to efficient suppression of photoexcited charge recombination. Density functional theory calculations support the experimental studies, demonstrating that the thiazole linkage is more favorable for the formation of *O2 intermediate in H2 O2 production than that of the oxazole and imidazole linkages. The real active sites in COFs located at the benzene ring fragment between pyrene unit and azole linkage.

9.
Sci Total Environ ; 873: 162343, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36813197

ABSTRACT

Methane (CH4) emissions from streams are an important component of the global carbon budget of freshwater ecosystems, but these emissions are highly variable and uncertain at the temporal and spatial scales associated with watershed urbanization. In this study, we conducted investigations of dissolved CH4 concentrations and fluxes and related environmental parameters at high spatiotemporal resolution in three montanic streams that drain different landscapes in Southwest China. We found that the average CH4 concentrations and fluxes in the highly urbanized stream (2049 ± 2164 nmol L-1 and 11.95 ± 11.75 mmol·m-2·d-1) were much higher than those in the suburban stream (1021 ± 1183 nmol L-1 and 3.29 ± 3.66 mmol·m-2·d-1) and were approximately 12.3 and 27.8 times those in the rural stream, respectively. It provides powerful evidence that watershed urbanization strongly enhances riverine CH4 emission potential. Temporal patterns of CH4 concentrations and fluxes and their controls were not consistent among the three streams. Seasonal CH4 concentrations in the urbanized streams had negative exponential relationships with monthly precipitation and demonstrated greater sensitivity to rainfall dilution than to the temperature priming effect. Additionally, the CH4 concentrations in the urban and semiurban streams showed strong, but opposite, longitudinal patterns, which were closely related to urban distribution patterns and the HAILS (human activity intensity of the land surface) within the watersheds. High carbon and nitrogen loads from sewage discharge in urban areas and the spatial arrangement of the sewage drainage contributed to the different spatial patterns of the CH4 emissions in different urbanized streams. Moreover, CH4 concentrations in the rural stream were mainly controlled by pH and inorganic nitrogen (NH4+ and NO3-), while urban and semiurban streams were dominated by total organic carbon and nitrogen. We highlighted that rapid urban expansion in montanic small catchments will substantially enhance riverine CH4 concentrations and fluxes and dominate their spatiotemporal pattern and regulatory mechanisms. Future work should consider the spatiotemporal patterns of such urban-disturbed riverine CH4 emissions and focus on the relationship between urban activities with aquatic carbon emissions.

10.
J Colloid Interface Sci ; 636: 435-449, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36641819

ABSTRACT

The application of amorphous ferrihydrite (Fh) for Cd(II) removal is restricted by its unstable and easily transformable nature. Although doping with silicates stabilized ferrihydrite, its product siliceous ferrihydrite (SiFh) again suffered from the disadvantage of spontaneous agglomeration. Herein, ferrihydrite was hybridized with halloysite nanotubes (HNTs) to prepare a novel siliceous ferrihydrite - coated halloysite nanorods (SiFh@HNTs) in alkaline medium, to break through the current barriers. The characterization results showed that SiFh@HNTs could simultaneously overcome the defects of easy phase transformation of ferrihydrite and easy aggregation of SiFh nanoparticles (NPs). Meanwhile, the optimal SiFh@HNT40 with halloysite content of 40 % formed a well-developed mesoporous structure and exhibited the desired surface properties: a high specific surface area of 303.4 m2/g, an isoelectric point as low as pHiep = 4.5, and rich functional Fe - OH groups. The formation mechanism of such excellent sturcture-properties of SiFh@HNT40 were mainly attributed to two factors: the generation of smaller (∼5 nm) SiFh NPs induced by the integration of halloysite-derived SiO44- into ferrihydrite, and the dispersion of SiFh NPs on clay nanotubes. Furthermore, the adsorption capacity of SiFh@HNT40 for Cd(II) was up to 137.8 mg/g at 30 °C and pH 6, which was much higher than that of aggregated ferrihydrite (11.2 mg/g), halloysite (18.8 mg/g) and goethite (49.4 mg/g). The adsorption thermodynamics study revealed the adsorption of Cd(II) on SiFh@HNT40 was clearly chemisorption with a (ΔHads)q of 43.3 kJ/mol. Characterization results of XPS and FTIR confirmed that the rich Fe - OH groups on SiFh@HNT40 was the main adsorption sites, and Cd(II) was specifically adsorbed by inner-sphere surface complexation. In addition, SiFh@HNT40 had application potential in the mixed-metal wastewaters treatment. Cyclic regeneration experiments showed that SiFh@HNT40 had good regeneration performance and could be reused many times.

11.
Environ Sci Pollut Res Int ; 30(7): 19210-19223, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36227492

ABSTRACT

Fabrication of heterojunction photocatalysts is a promising strategy for enhancing photocatalytic activity. However, the study about traditional type-I heterojunction still remains to be developed. Herein, a PDIsa/BiOBr traditional type-I heterojunction was constructed by electrostatic self-assembly method, which owned improved light absorption capacity and photogenerated charge separation efficiency. The interfacial electric field and the polarization electric field of PDIsa impelled the separation of excitons. The degradation rate of ciprofloxacin (CIP) was improved by 3.2 times over the optimal PDIsa/BiOBr composite than pure BiOBr. In addition, the TOC removal efficiency reached 67.34% within 120 min. Trapping experiments and electron spin resonance (ESR) tests showed that superoxide radical (•O2-) was the most active species, and singlet oxygen (1O2) and hole (h+) played a secondary role. The work may furnish a new reference for designing BiOBr-based type-I heterojunction.


Subject(s)
Bismuth , Ciprofloxacin , Catalysis
12.
Sci Total Environ ; 857(Pt 3): 159642, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36302400

ABSTRACT

An alternative stable state is closely related to the health and sustainable development of ecosystems; however, knowledge of the alternative stable state and its quantitative evaluation in wetland reconstruction remains incomplete. In this study, we used landscape design to reconstruct an optimized ecological polder wetland and a lake wetland in the Yunmeng Marsh area, China, and the alternative stable states of the two wetland ecosystems were assessed from an ecosystem perspective via emergy/eco-exergy and fractal dimensions. The emergy densities for the optimized ecological polder wetland and the lake wetland were 2.35E+13 sej yr-1 m-3 and 2.18E+13 sej m-3, and the emergy sustainability index (ESI) values were 216.57 and 193.31, respectively, indicating that the reconstructed wetland ecosystems were dominated by renewable energy flows and were highly sustainable. The eco-exergy density and emergy/eco-exergy ratio results showed that natural selection self-organized the reconstructed wetland ecosystems to tolerate environmental stresses and changes. In addition, the fractal dimensions of the morphology and contour of the polder wetland, which reflect the space occupation capacity of geometric and physical constraints in the wetland, were 1.57 and 1.75, and those of the lake wetland were 1.03 and 1.47, respectively. The synthetic evaluation results showed that the alternative stable states of both the optimized ecological polder wetland ecosystem and the lake wetland ecosystem were ecofriendly modes of wetland reconstruction, which can be implemented together to create a "lake-polder" ecosystem. Our study on the alternative stable states of wetland ecosystems is helpful for exploring the synergistic symbiosis between traditional culture and the ecological environment in China and other wetland-rich regions and countries with severe disturbances.


Subject(s)
Ecosystem , Wetlands , Conservation of Natural Resources/methods , Lakes , China
13.
Front Genet ; 13: 1085700, 2022.
Article in English | MEDLINE | ID: mdl-36579330

ABSTRACT

Background: Head and neck squamous cell carcinoma (HNSCC) is a malignant tumor with a very high mortality rate, and a large number of studies have confirmed the correlation between inflammation and malignant tumors and the involvement of inflammation-related regulators in the progression of HNSCC. However, a prognostic model for HNSCC based on genes involved in inflammatory factors has not been established. Methods: First, we downloaded transcriptome data and clinical information from patients with head and neck squamous cell carcinoma from TCGA and GEO (GSE41613) for data analysis, model construction, and differential gene expression analysis, respectively. Genes associated with inflammatory factors were screened from published papers and intersected with differentially expressed genes to identify differentially expressed inflammatory factor-related genes. Subgroups were then typed according to differentially expressed inflammatory factor-related genes. Univariate, LASSO and multivariate Cox regression algorithms were subsequently applied to identify prognostic genes associated with inflammatory factors and to construct prognostic prediction models. The predictive performance of the model was evaluated by Kaplan-Meier survival analysis and receiver operating characteristic curve (ROC). Subsequently, we analyzed differences in immune composition between patients in the high and low risk groups by immune infiltration. The correlation between model genes and drug sensitivity (GSDC and CTRP) was also analyzed based on the GSCALite database. Finally, we examined the expression of prognostic genes in pathological tissues, verifying that these genes can be used to predict prognosis. Results: Using univariate, LASSO, and multivariate cox regression analyses, we developed a prognostic risk model for HNSCC based on 13 genes associated with inflammatory factors (ITGA5, OLR1, CCL5, CXCL8, IL1A, SLC7A2, SCN1B, RGS16, TNFRSF9, PDE4B, NPFFR2, OSM, ROS1). Overall survival (OS) of HNSCC patients in the low-risk group was significantly better than that in the high-risk group in both the training and validation sets. By clustering, we identified three molecular subtypes of HNSCC carcinoma (C1, C2, and C3), with C1 subtype having significantly better OS than C2 and C3 subtypes. ROC analysis suggests that our model has precise predictive power for patients with HNSCC. Enrichment analysis showed that the high-risk and low-risk groups showed strong immune function differences. CIBERSORT immune infiltration score showed that 25 related and differentially expressed inflammatory factor genes were all associated with immune function. As the risk score increases, specific immune function activation decreases in tumor tissue, which is associated with poor prognosis. We also screened for susceptibility between the high-risk and low-risk groups and showed that patients in the high-risk group were more sensitive to talazoparib-1259, camptothecin-1003, vincristine-1818, Azd5991-1720, Teniposide-1809, and Nutlin-3a (-) -1047.Finally, we examined the expression of OLR1, SCN1B, and PDE4B genes in HNSCC pathological tissues and validated that these genes could be used to predict the prognosis of HNSCC. Conclusion: In this experiment, we propose a prognostic model for HNSCC based on inflammation-related factors. It is a non-invasive genomic characterization prediction method that has shown satisfactory and effective performance in predicting patient survival outcomes and treatment response. More interdisciplinary areas combining medicine and electronics will be explored in the future.

14.
Chemosphere ; 309(Pt 1): 136419, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36152824

ABSTRACT

Transforming hazardous livestock manure into biochar as an advanced oxidation processes catalyst is a two-in-one strategy to treat waste by waste. In this work, a self-modified biochar catalyst obtained from chicken manure is developed for peroxymonosulfate activation to degrade levofloxacin hydrochloride. The deterioration rate of levofloxacin hydrochloride reached 89% in 40 min, after three cycles of the catalyst, the LFX still maintained 52% degradation rate. And under low levofloxacin hydrochloride concentration, the degradation rate can reach 99% within 40 min. Apart from catalyst characterization and optimization, the effects of catalyst, peroxymonosulfate, levofloxacin hydrochloride, co-existing anions, and natural organic matter concentrations during the reaction are investigated. Additionally, the quenching experiments and electron spin resonance spectroscopy both reveal the reaction mechanism. As the graphitic nitrogen combined with the sp2-hybridized carbon in biochar was highly electronegative, thus appealing electrons from neighboring carbon networks, making the adjoining carbon atoms to be positively charged, which facilitated the degradation process. The oxidative degradation of levofloxacin hydrochloride was ascribed to non-radical routes including surface-bound radicals, h+ and 1O2 mediated oxidation, the contribution rates were 91%, 93.5%, and 96.8%, respectively. Moreover, possible degradation pathways of levofloxacin hydrochloride are studied by Density Functional Theory (DFT) and LC-MS analysis. This work provides a novel method to produce chicken manure biochar by self-modified chicken manure during biochar pyrolysis for peroxymonosulfate activation in organic contaminations abatement and reveals the combined effect of graphitization and nitrogen functionalization while providing new ideas for the resource utilization of chicken manure.


Subject(s)
Manure , Nitrogen , Animals , Chickens , Levofloxacin , Charcoal/chemistry , Peroxides/chemistry , Carbon
15.
Environ Pollut ; 313: 120098, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36075337

ABSTRACT

Streams draining urban areas are usually regarded as hotspots of methane (CH4) and nitrous oxide (N2O) emissions. However, little is known about the coupling effects of watershed pollution and restoration on CH4 and N2O emission dynamics in heavily polluted urban streams. This study investigated the CH4 and N2O concentrations and fluxes in six streams that used to be heavily polluted but have undergone different watershed restorations in Southwest China, to explore the comprehensive influences of pollution and restoration. CH4 and N2O concentrations in the six urban streams ranged from 0.12 to 21.32 µmol L-1 and from 0.03 to 2.27 µmol L-1, respectively. The calculated diffusive fluxes of CH4 and N2O were averaged of 7.65 ± 9.20 mmol m-2 d-1 and 0.73 ± 0.83 mmol m-2 d-1, much higher than those in most previous reports. The heavily polluted streams with non-restoration had 7.2 and 7.8 times CH4 and N2O concentrations higher than those in the fully restored streams, respectively. Particularly, CH4 and N2O fluxes in the fully restored streams were 90% less likely than those found in the unrestored ones. This result highlighted that heavily polluted urban streams with high pollution loadings were indeed hotspots of CH4 and N2O emissions throughout the year, while comprehensive restoration can effectively weaken their emission intensity. Sewage interception and nutrient removal, especially N loadings reduction, were effective measures for regulating the dynamics of CH4 and N2O emissions from the heavily polluted streams. Based on global and regional integration, it further elucidated that increasing environment investments could significantly improve water quality and mitigate CH4 and N2O emissions in polluted urban streams. Overall, our study emphasized that although urbanization could inevitably strengthen riverine CH4 and N2O emissions, effective eco-restoration can mitigate the crisis of riverine greenhouse gas emissions.


Subject(s)
Greenhouse Gases , Methane , Carbon Dioxide/analysis , China , Greenhouse Gases/analysis , Methane/analysis , Nitrous Oxide/analysis , Rivers , Sewage
16.
J Colloid Interface Sci ; 626: 564-580, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-35809445

ABSTRACT

Developing a high-efficiency peroxymonosulfate (PMS) activator is of great significance for the elimination and mineralization of organic contaminants. Herein, a catalyst (LiNi0.5Co0.2Mn0.3O2, NCM) was constructed using the cathode scrap of spent lithium-ion battery (LIB) for activation of PMS to remove Rhodamine B (RhB). The excellent catalytic capacity of NCM-650 was observed, as RhB was completely removed after 25 min. The NCM-650/PMS process could function effectively over a broad pH scope with favorable reusability and adaptability. The non-radical channels (singlet oxygen and mediated charge transfer) played a dominant role in the removal of RhB. Several reactive radical species (sulfate radicals, hydroxyl radicals and superoxide radicals) also facilitated the degradation of RhB, where the Co2+ and Mn4+ on the surface served as active sites to activate PMS. The synergistic effect of inter-valence cobalt and manganese in the catalyst was the predominant medium during the whole reaction process. According to the intermediates identified by High performance liquid chromatograph-mass spectrometry (HPLC-MS) and the analysis of density function theory (DFT) calculations, N-de-ethylation, chromophore cleavage, ring opening, and mineralization were regarded as the primary decomposition pathways. This research provided a novel perspective on the potential application of waste LIBs for the effective activation of PMS.

17.
J Hazard Mater ; 436: 129317, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35739807

ABSTRACT

The severe pollution caused by antibiotics has prompted considerable concerns in recent decades. In this study, the Bi2Sn2O7/PDIH Z-scheme heterojunction photocatalyst was synthesized and highly photocatalytic activity on norfloxacin was obtained. The degradation of norfloxacin reached 98.71% in 90 min under visible light. The apparent rate constant of norfloxacin (0.4 903 min-1) was 3.65 and 20 times that of PDIH and the Bi2Sn2O7. Meanwhile, XPS, electrochemical, Photoluminescence spectroscopy and electron paramagnetic resonance results showed that Z-scheme charge-transfer process facilitated the spatial carrier separation and preserve redox capability. Furthermore, the degradation intermediates of norfloxacin and their toxicities were evaluated. Finally, in the view of the survey about the impact of different water matrices, it was found that the Bi2Sn2O7/PDIH maintained high efficiency in raw natural water. This work enriched inorganic/organic heterojunction engineering for PDIH, and provided the enormous potential for combining the Bi2Sn2O7 with PDIH to address the antibiotic pollution issues in the actual water treatment.


Subject(s)
Norfloxacin , Water Purification , Anti-Bacterial Agents , Bismuth/chemistry , Catalysis , Norfloxacin/chemistry
18.
Sci Total Environ ; 838(Pt 1): 155693, 2022 Sep 10.
Article in English | MEDLINE | ID: mdl-35526616

ABSTRACT

Layered double hydroxides (LDHs) are ionic laminar composites composed of positively charged brucite-like layers with an interlayered region containing charged compensating anions and solvation molecules. Such functional LDHs materials present a strong potential for heavy metal treatment especially for wastewater and soil, due to the large surface area and layered structure. This paper started with the background of techniques for heavy metals treatment and then discussed the potential environmental toxic effects, feasibility, stability of LDH composites. The preparation strategies of LDHs composites, and their application were summarized, followed by main mechanisms involving chelation, complexation, surface precipitation, ion exchange. This work also presented the potential environmental toxic effects, feasibility, stability of LDHs composites, reuse of waste liquid and the ratio adjustment of M2+ and N3+ for LDHs synthesis. While most efforts focused on improving the absorption capacity of LDHs by composites construction, ignoring the toxicity effects and detailed mechanism investigation. Based on a thorough review of the latest development, the challenges and perspectives would be proposed, offering promising insights on environmental purification via LDHs based materials.


Subject(s)
Hydroxides , Metals, Heavy , Adsorption , Hydroxides/chemistry , Soil , Wastewater/chemistry
19.
Water Res ; 219: 118558, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35569278

ABSTRACT

The widespread distribution of persistent organic pollutants (POPs) in natural waters has aroused global concern due to their potential threat to the aquatic environment. Photocatalysis represents a promising mean to remediate polluted waters with the simple assistance of solar energy. Herein, we fabricated a Co-Cl bond reinforced CoAl-LDH/Bi12O17Cl2 heterogeneous photocatalyst to investigate the feasibility of photocatalysis to treat POPs-polluted water under environmental conditions. The optimum CoAl-LDH/Bi12O17Cl2 (5-LB) composite photocatalyst exhibited excellent photocatalytic performance, which could degrade 92.47 % of ciprofloxacin (CIP) and 95 % of bisphenol A (BPA) with 2h of actual solar light irradiation in Changsha, China (N 28.12 °, E 112.59 °). In view of the synergistic influence of water constituents, various water matrices greatly affected the degradation rate of CIP (BPA), with the degradation efficiency of 82.17% (84.37%) in tap water, 69.67% (71.63%) in wastewater effluent, and 44.07% (67.7%) in wastewater inflow. The results of electron spin resonance, and chemical trapping experiment, HPLC-MS and density functional theory calculation reflected that the degradation of CIP was mainly attributed to h+ and 1O2 attacking the active atoms of CIP molecule with high Fukui index. Furthermore, the non-toxicity of both 5-LB photocatalyst and treated CIP solution was proved by E.coli and B.subtilis cultivation, which further demonstrated the feasibility of the 5-LB to treat POPs in real water under irradiation of solar light.


Subject(s)
Coal , Persistent Organic Pollutants , Catalysis , Ciprofloxacin , Escherichia coli , Light , Wastewater , Water
20.
Chemosphere ; 299: 134217, 2022 07.
Article in English | MEDLINE | ID: mdl-35288182

ABSTRACT

In this work, a novel and efficient magnesium ferrite-modified montmorillonite (MgFe2O4-MMT) compound was prepared. MgFe2O4-MMT and biochar were mixed at 0:10, 1:9, 3:7, 4:6, and 10:0 w/w combinations and were used for heavy metal immobilization in soil polluted with multiple heavy metals. MgFe2O4-MMT can significantly increase soil alkalinity, and it exhibited the most optimal effect in immobilization of heavy metals in soil. The amounts of Cd, Pb, Cu, and Zn that were extracted by the toxicity characteristic leaching procedure (TCLP) decreased by 58.4%, 50.3%, 42.9%, and 24.7%, respectively. MgFe2O4-MMT can immobilize heavy metals through electrostatic interactions and cation exchange processes. Although, the immobilization of potentially toxic elements by MgFe2O4-MMT and biochar was inferior to that by MgFe2O4-MMT. The combined application of MgFe2O4-MMT and biochar dramatically increased the diversity and richness of the soil bacterial community. The Chao1 index for M3B7 treatment group was 1.7 and 1.2 times higher than that for the control and MgFe2O4-MMT treatment groups, respectively. The combination of biochar and MgFe2O4-MMT might be a cost-effective and ecological remediation approach for mild Pb and Cd contamination.


Subject(s)
Metals, Heavy , Soil Pollutants , Bentonite , Cadmium/analysis , Charcoal , Lead , Metals, Heavy/analysis , Soil , Soil Pollutants/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...