Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 352: 120021, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38183916

ABSTRACT

The global response to lithium scarcity is overstretched, and it is imperative to explore a green process to sustainably and selectively recover lithium from spent lithium-ion battery (LIB) cathodes. This work investigates the distinct leaching behaviors between lithium and transition metals in pure formic acid and the auxiliary effect of acetic acid as a solvent in the leaching reaction. A formic acid-acetic acid (FA-AA) synergistic system was constructed to selectively recycle 96.81% of lithium from spent LIB cathodes by regulating the conditions of the reaction environment to inhibit the leaching of non-target metals. Meanwhile, the transition metals generate carboxylate precipitates enriched in the leaching residue. The inhibition mechanism of manganese leaching by acetic acid and the leaching behavior of nickel or cobalt being precipitated after release was revealed by characterizations such as XPS, SEM, and FTIR. After the reaction, 90.50% of the acid can be recycled by distillation, and small amounts of the residual Li-containing concentrated solution are converted to battery-grade lithium carbonate by roasting and washing (91.62% recovery rate). This recycling process possesses four significant advantages: i) no additional chemicals are required, ii) the lithium sinking step is eliminated, iii) no waste liquid is discharged, and iv) there is the potential for profitability. Overall, this study provides a novel approach to the waste management technology of lithium batteries and sustainable recycling of lithium resources.


Subject(s)
Formates , Lithium , Metals , Lithium/chemistry , Metals/chemistry , Recycling , Electrodes , Electric Power Supplies , Acetic Acid
2.
Water Res ; 249: 120931, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38101051

ABSTRACT

Fenton reaction has been widespread application in water purification due to the excellent oxidation performances. However, the poor cycle efficiency of Fe(III)/Fe(II) is one of the biggest bottlenecks. In this study, graphite (GP) was used as a green carbon catalyst to accelerate Fenton-like (H2O2/Fe3+ and persulfate/Fe3+) reactions by promoting ferric ion reduction and intensifying diverse peroxide activation pathways. Significantly, the carboxyl group on GP anchors iron ions to form GP-COOFe(III) which promote persulfate adsorption to form surface complexes and induce an electron transfer pathway (ETP). While the electron-rich hydroxyl and carbonyl groups will combine to from GP-COFe(II), a reductive intermediate to activate peroxide to generate free radicals (from H2O2 and PDS) or high-value iron [Fe(IV)] (from PMS). Consequently, different pathways lead to distinct degree of oxidation: i) radicals in H2O2/Fe3+/GP prefer to mineralize bisphenol A (BPA) with no selectivity; ii) Fe(IV) in PMS/Fe3+/GP partially oxidizes BPA but cannot open the aromatic ring; iii) ETP in PMS/ or PDS/Fe3+/GP drives coupling reactions to form polymeric products covered on catalyst surface. Thus, rational engineering surface functionality of graphite and selecting proper peroxides can realize on-demand selectivity and oxidation capacity in Fenton-like systems.


Subject(s)
Ferric Compounds , Graphite , Hydrogen Peroxide , Polymerization , Iron , Peroxides , Oxidation-Reduction
3.
Waste Manag ; 165: 19-26, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37075685

ABSTRACT

The slow rate of organic acid leaching is the main factor hindering the ecological recycling of spent lithium-ion battery (LIB) cathode materials. Here, a mixed green reagent system of ascorbic acid and acetic acid is proposed to leach valuable metal ions from the spent LIBs cathode materials rapidly. In 10 min, 94.93% Li, 95.09% Ni, 97.62% Co, and 96.98% Mn were leached, according to the optimization results. Kinetic studies and material characterization technologies like XRD, SEM, XPS, UV-vis, and FTIR show that the "diffusion" and "stratification" effects of acetic acid contribute to the dual-function leaching agent ascorbic acid quickly extract metal ions from spent LiNi0.5Co0.3Mn0.2O2 (NCM532) materials at a mild temperature. In addition, the density-functional theory (DFT) calculations of spent NCM532 structural surfaces and leaching agents show that the fast leaching of valuable metal ions is due to the synergy between ascorbic acid and acetic acid. These results provided an approachable thinking for developing advanced and environmentally friendly strategies for recycling spent LIB cathode materials.


Subject(s)
Metals , Recycling , Acetic Acid , Ascorbic Acid , Electric Power Supplies , Electrodes , Kinetics , Lithium , Metals/chemistry , Recycling/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...