Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Food Funct ; 14(21): 9734-9742, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37818605

ABSTRACT

Insufficient protein intake and cognitive decline are common in older adults; however, there have been few studies on low protein risk screening and complex nutrient interventions for elderly individuals in rural communities. This study aimed to evaluate the effect of dietary multinutrient soy flour (MNSF) on body composition and cognitive function in elderly individuals who are at risk of protein deficiency in a randomized, double-blind, placebo-controlled clinical trial. Nutritional interventions were given to those found to have low protein levels using bioelectrical impedance analysis (BIA). Among 733 older adults screened, 62 participants were included and randomly assigned into two groups, one taking soy flour and the other taking MNSF for 12 weeks. A previous cross-sectional survey found that 35.1% of the elderly people with an average age of 71.61 ± 5.94 years had an inadequate body protein mass proportion. After the intervention, the MNSF group demonstrated a significant improvement in protein mass, muscle mass, mineral levels, skeletal muscle mass, and fat-free mass compared with baseline (all P < 0.05), as well as a better upward trend compared with the soy flour group (P = 0.08; P = 0.07; P = 0.05; P = 0.08; P = 0.07). Regarding the mini-mental state examination (MMSE) scores, the MNSF group showed a significant decrease after 12 weeks (P < 0.05), which were significantly different compared with the soy flour group (P < 0.05). In the future, the application of MNSF as a food-based supplement to improve nutrition and delay cognitive decline in older adults at the risk of protein deficiency may be considered.


Subject(s)
Flour , Protein Deficiency , Humans , Aged , Cross-Sectional Studies , Body Composition , Dietary Supplements , Cognition , Soybean Proteins/pharmacology , Diet, Protein-Restricted , Double-Blind Method
2.
Mol Nutr Food Res ; 67(1): e2200337, 2023 01.
Article in English | MEDLINE | ID: mdl-36408889

ABSTRACT

SCOPE: Gastrointestinal side effects are frequently observed in patients receiving medical radiation therapy. As Lacticaseibacillus casei ATCC334 potentially affects microbial ecosystem, the study hypothesizes that it may improve radiation-induced intestinal injury in rats by modulating the "gut microbiota-metabolite-barrier axis." METHODS AND RESULTS: Rats are fed one of three or no doses of L. casei ATCC334 for 7 days and then expose to a single dose of 9 Gy X-ray total abdominal irradiation. Supplementation with L. casei ATCC334 promote the proliferation of intestinal stem cells (ISCs), increase the expression of tight junction proteins, reduce intestinal permeability, and protect intestinal barrier integrity. Moreover, 16S rRNA sequencing show that medium and high doses of L. casei ATCC334 inhibit the growth of Escherichia/Shigella and favor Akkermansia proliferation. L. casei ATCC334 intervention reprogram the metabolic profile and inhibit putrescine production but promote alpha-linolenic acid (ALA) production. Notably, a decrease in putrescine and an increase in ALA are significantly correlated with the proliferation of ISCs and enhanced intestinal barrier function following L. casei ATCC334 intervention. CONCLUSION: These results highlight that medium and high doses of L. casei ATCC334 alleviate radiation-induced intestinal damage by enhancing the mucosal barrier and remodeling the gut microbiota structure and metabolic activity.


Subject(s)
Lacticaseibacillus casei , Lacticaseibacillus , Rats , Animals , Ecosystem , Putrescine , RNA, Ribosomal, 16S
3.
Bioresour Technol ; 218: 580-8, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27403860

ABSTRACT

Controlling of low dissolved oxygen (DO) levels (0.1-0.5mg/L), a cost-effective strategy, was applied to a pilot-scale anoxic-oxic-oxic-anoxic process for partial nitrification and denitrification of mature landfill leachate. High ammonium removal efficiency, stable nitrite accumulation rate and total nitrogen removal efficiency was higher than 95.0%, 90.0% and 66.4%, respectively, implying potential application of this process for nitrogen removal of mature landfill leachate. Efficient nitrite accumulation in the first oxic reactor depended on low DO conditions and sufficient alkalinity. However, operational limit was mainly decided by actual hydraulic retention time (AHRT) of the first oxic reactor and appeared with AHRT less than 13.9h under DO of 0.3-0.5mg/L. High-throughput sequencing analysis demonstrated significant change of bacterial diversity in the first oxic reactor after a long-term operation and dominant bacteria genus Nitrosomonas was shown to be responsible for NH4(+)-N removal and nitrite accumulation under low DO levels.


Subject(s)
Denitrification/physiology , Nitrification/physiology , Oxygen/chemistry , Sewage/chemistry , Water Pollutants, Chemical/chemistry , Ammonium Compounds/metabolism , Bacteria/growth & development , Bacteria/metabolism , Bioreactors/microbiology , Nitrites/metabolism , Nitrogen/metabolism , Nitrosomonas/growth & development , Nitrosomonas/metabolism , Pilot Projects , Water Pollutants, Chemical/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...