Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Neurobiol ; 60(10): 5789-5804, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37349621

ABSTRACT

The mechanism underlying the hypnosis effect of propofol is still not fully understood. In essence, the nucleus accumbens (NAc) is crucial for regulating wakefulness and may be directly engaged in the principle of general anesthesia. However, the role of NAc in the process of propofol-induced anesthesia is still unknown. We used immunofluorescence, western blotting, and patch-clamp to access the activities of NAc GABAergic neurons during propofol anesthesia, and then we utilized chemogenetic and optogenetic methods to explore the role of NAc GABAergic neurons in regulating propofol-induced general anesthesia states. Moreover, we also conducted behavioral tests to analyze anesthetic induction and emergence. We found out that c-Fos expression was considerably dropped in NAc GABAergic neurons after propofol injection. Meanwhile, patch-clamp recording of brain slices showed that firing frequency induced by step currents in NAc GABAergic neurons significantly decreased after propofol perfusion. Notably, chemically selective stimulation of NAc GABAergic neurons during propofol anesthesia lowered propofol sensitivity, prolonged the induction of propofol anesthesia, and facilitated recovery; the inhibition of NAc GABAergic neurons exerted opposite effects. Furthermore, optogenetic activation of NAc GABAergic neurons promoted emergence whereas the result of optogenetic inhibition was the opposite. Our results demonstrate that NAc GABAergic neurons modulate propofol anesthesia induction and emergence.


Subject(s)
Propofol , Propofol/pharmacology , Nucleus Accumbens , GABAergic Neurons , Hypnotics and Sedatives/pharmacology , Anesthesia, General
2.
Biomed Environ Sci ; 35(4): 283-295, 2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35473893

ABSTRACT

Objective: Neonatal exposure to propofol has been reported to cause neurotoxicity and neurocognitive decline in adulthood; however, the underlying mechanism has not been established. Methods: SD rats were exposed to propofol on postnatal day 7 (PND-7). Double-immunofluorescence staining was used to assess neurogenesis in the hippocampal dentate gyrus (DG). The expression of p-Akt and p27 were measured by western blotting. The Morris water maze, novel object recognition test, and object location test were used to evaluate neurocognitive function 2-month-old rats. Results: Phosphorylation of Akt was inhibited, while p27 expression was enhanced after neonatal exposure to propofol. Propofol also inhibited proliferation of neural stem cells (NSCs) and decreased differentiation to neurons and astroglia. Moreover, the neurocognitive function in 2-month-old rats was weakened. Of significance, intra-hippocampal injection of the Akt activator, SC79, attenuated the inhibition of p-AKT and increase of p27 expression. SC79 also rescued the propofol-induced inhibition of NSC proliferation and differentiation. The propofol-induced neurocognition deficit was also partially reversed by SC79. Conclusion: Taken together, these results suggest that neurogenesis is hindered by neonatal propofol exposure. Specifically, neonatal propofol exposure was shown to suppress the proliferation and differentiation of NSCs by inhibiting Akt/p27 signaling pathway.


Subject(s)
Neural Stem Cells , Propofol , Animals , Cell Proliferation , Hippocampus/metabolism , Propofol/metabolism , Propofol/toxicity , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Rats , Rats, Sprague-Dawley , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...