Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Animal Model Exp Med ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38988280

ABSTRACT

BACKGROUND: Dengue fever, an acute insect-borne infectious disease caused by the dengue virus (DENV), poses a great challenge to global public health. Hepatic involvement is the most common complication of severe dengue and is closely related to the occurrence and development of disease. However, the features of adaptive immune responses associated with liver injury in severe dengue are not clear. METHODS: We used single-cell sequencing to examine the liver tissues of mild or severe dengue mice model to analyze the changes in immune response of T cells in the liver after dengue virus infection, and the immune interaction between macrophages and T cells. Flow cytometry was used to detect T cells and macrophages in mouse liver and blood to verify the single-cell sequencing results. RESULTS: Our result showed CTLs were significantly activated in the severe liver injury group but the immune function-related signal pathway was down-regulated. The reason may be that the excessive immune response in the severe group at the late stage of DENV infection induces the polarization of macrophages into M2 type, and the macrophages then inhibit T cell immunity through the TGF-ß signaling pathway. In addition, the increased proportion of Treg cells suggested that Th17/Treg homeostasis was disrupted in the livers of severe liver injury mice. CONCLUSIONS: In this study, single-cell sequencing and flow cytometry revealed the characteristic changes of T cell immune response and the role of macrophages in the liver of severe dengue fever mice. Our study provides a better understanding of the pathogenesis of liver injury in dengue fever patients.

2.
J Cell Biochem ; 124(9): 1346-1365, 2023 09.
Article in English | MEDLINE | ID: mdl-37555580

ABSTRACT

Elsinochrome A (EA) is a perylene quinone natural photosensitizer, photosensitizer under light excitation generates reactive oxygen species (ROS) to induce apoptosis, so can be used for treating tumors, that is so-called photodynamic therapy (PDT). However, the molecular mechanism, especially related to apoptosis and autophagy, is still unclear. In this study, we aimed to explore the mechanism of EA-PDT-induced B16 cells apoptosis and autophagy. The action of EA-PDT on mitochondrial permeability transition pore (MPTP), mitochondrial membrane potential (MMP) and the mitochondrial function were researched by fluorescence technique and Extracellular Flux Analyzer. Illumina sequencing, tandem mass tags Quantitative Proteomics and Western Blot studied the mechanism at the gene and protein levels. The results indicated that EA-PDT had excellent phototoxicity in vitro. EA could bind to the mitochondria. EA-PDT for 5 min caused MPTP opening, MMP decreasing and abnormal mitochondrial function with a concentration-dependent characteristic. EA-PDT resulted in an increase intracellular ROS and the number of autophagosomes. Caspase2, caspase9 and tnf were upregulated, and bcl2, prkn, atg2, atg9 and atg10 were downregulated. Our results indicated that EA-PDT induced cell apoptosis and autophagy through the mediation of ROS/Atg/Parkin. This study can provide enlightenment for exploring potential targets of drug development for the PDT of melanoma.


Subject(s)
Photochemotherapy , Photosensitizing Agents , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Photochemotherapy/methods , Reactive Oxygen Species/metabolism , Cell Line, Tumor , Apoptosis , Autophagy
3.
J Fluoresc ; 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37561367

ABSTRACT

Widely utilized in the chemical industry and agriculture, hydrazine is easily absorbed by living things and can cause physical harm when in touch for an extended period of time. As a result, a novel cinnamaldehyde chalcone C5 was produced by Friedel Crafts process and aldol condensation reaction. Triphenylamine was used as the raw material for hydrazine determination in both reactions. Chalcone C5 exhibits significant AIE behavior in a mixed mixture of ethanol and water in addition to having great selectivity and a low detection limit (0.119 nm) for hydrazine. The solvent effect test revealed a linear relationship between the Stokes shift of C5 in the solvent and the rise in solvent orientation polarization. It is important to note that C5 is not harmful to MCF-7 cells, mouse kidney cells, or pig kidney cells. Furthermore, research on cell imaging has demonstrated that probe C5 may be utilized to image the fluorescence of hydrazine in active MCF-7 cells.

4.
Zhongguo Zhong Yao Za Zhi ; 48(7): 1892-1898, 2023 Apr.
Article in Chinese | MEDLINE | ID: mdl-37282965

ABSTRACT

The present study aimed to explore the chemical constituents from the stems and leaves of Cephalotaxus fortunei. Seven lignans were isolated from the 75% ethanol extract of C. fortunei by various chromatographic methods, including silica gel, ODS column chromatography, and HPLC. The structures of the isolated compounds were elucidated according to physicochemical properties and spectral data. Compound 1 is a new lignan named cephalignan A. The known compounds were identified as 8-hydroxy-conidendrine(2), isolariciresinol(3), leptolepisol D(4), diarctigenin(5), dihydrodehydrodiconiferyl alcohol 9'-O-ß-D-glucopyranoside(6), and dihydrodehydrodiconiferyl alcohol 4-O-ß-D-glucopyranoside(7). Compounds 2 and 5 were isolated from the Cephalotaxus plant for the first time.


Subject(s)
Cephalotaxus , Lignans , Lignans/analysis , Plant Leaves/chemistry , Ethanol , Chromatography, High Pressure Liquid
5.
J Ethnopharmacol ; 288: 114862, 2022 Apr 24.
Article in English | MEDLINE | ID: mdl-34861362

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Bu-shen-zhu-yun decoction (BSZYD) is a traditional chinese herbal prescription is widely used in the treatment of infertility. AIM OF THE STUDY: We aimed to elucidate the impact of a traditional herbal prescription BSZYD on polycystic ovary syndrome (PCOS). MATERIALS AND METHODS: The candidate active compounds in BSZYD and their putative targets were investigated by bioinformatics analysis. A deydroepiandrosterone (DHEA)-induced PCOS rat model was then constructed using female Sprague-Dawley (SD) rats. Serum hormone levels were measured by enzyme-linked immunosorbent assay (ELISA). Pathological changes in ovarian tissues were analyzed with hematoxylin and eosin (H&E) staining. The expressions of estrogen receptor α (ER α)-mediated PI3K/AKT/mTOR pathway were measured by immunofluorescence and western blotting. RESULTS: Bioinformatics analysis showed that the putative targets of active compound candidates in BSZYD were enriched in PI3K/AKT and estrogen signaling pathways related to regulating ovarian ovulation. Animal experiments showed that BSZYD significantly alleviated pathological changes in the ovary, altered hormone levels of serum and reduced apoptosis rate of granulosa cells. In addition, BSZYD treatment notably upregulated the expressions of proteins in ER α-mediated PI3K/AKT/mTOR pathway and downregulated apoptosis-related proteins in PCOS rats. CONCLUSION: BSZYD can restore ovary lesions and ameliorate apoptosis through ER α-mediated PI3K/AKT/mTOR pathway, which might partly contribute to the treatment of PCOS.


Subject(s)
Apoptosis/drug effects , Drugs, Chinese Herbal/pharmacology , Granulosa Cells/drug effects , Polycystic Ovary Syndrome/drug therapy , Animals , Disease Models, Animal , Down-Regulation/drug effects , Estrogen Receptor alpha/metabolism , Female , Phosphatidylinositol 3-Kinase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats , Rats, Sprague-Dawley , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism
6.
Toxicol Appl Pharmacol ; 434: 115814, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34843800

ABSTRACT

Di(2-ethylhexyl) phthalate (DEHP) belongs to environmental endocrine disrupting chemicals (EEDCs) and can be rapidly hydrolyzed into the ultimate toxicant mono-2-ethylhexyl phthalate (MEHP). In this study, we used 5-aminofluorescein modified MEHP (MEHP-AF) as a fluorescence tracer to explore the toxicokinetics, including toxicokinetic parameters, absorption and transport across the intestinal mucosal barrier, distribution and pathological changes of organs. While the dose was as lower than 10 mg/kg by intragastric administration, the toxicokinetic parameters obtained by fluorescence microplate method were similar to those with the literatures by chromatography. MEHP-AF can be rapidly absorbed through the intestinal mucosal barrier in rats. In situ organ distribution in mice showed that MEHP-AF was mainly concentrated in the liver, kidney and testis. Our results suggested that the fluorescence tracing technique had the advantages with easy processing, less time-consuming, higher sensitivity for the quantitative determination, In addition, this technology also avoids the interference of exogenous or endogenous DEHP and MEHP in the experimental system. It also can be utilized to the visualization detection of MEHP in situ localization in the absorption organ and the toxic target organ. The results show that this may be a more feasible MEHP toxicological research method.


Subject(s)
Diethylhexyl Phthalate/analogs & derivatives , Fluoresceins/chemistry , Animals , Area Under Curve , Caco-2 Cells , Colorectal Neoplasms , Diethylhexyl Phthalate/chemistry , Diethylhexyl Phthalate/pharmacokinetics , Diethylhexyl Phthalate/toxicity , Half-Life , Humans , Male , Mice , Mice, Inbred ICR , Optical Imaging , Rats , Rats, Sprague-Dawley
7.
Phytochemistry ; 192: 112939, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34536803

ABSTRACT

The Cephalotaxus genus is well-known owing to the numerous complex, biologically relevant natural products that can be obtained from its constituent species. The successful identification of various Cephalotaxus alkaloids and natural, structurally diverse cephalotane diterpenoids that exhibit antitumor activities and excellent pharmacological properties has encouraged the discovery of previously undescribed compounds from this genus. The present review summarizes the different strategies for the total synthesis of cephalotane diterpenoids as well as their diverse chemical structures, antitumor activities, structure-activity relationships (SARs), and biosynthetic pathways.


Subject(s)
Antineoplastic Agents, Phytogenic , Biological Products , Cephalotaxus , Diterpenes , Antineoplastic Agents, Phytogenic/pharmacology , Biological Products/pharmacology , Diterpenes/pharmacology , Structure-Activity Relationship
8.
Mater Sci Eng C Mater Biol Appl ; 124: 112039, 2021 May.
Article in English | MEDLINE | ID: mdl-33947539

ABSTRACT

In this study, to improve the intestinal absorption of small molecule chemotherapeutic drug docetaxel (DTX) and macromolecular monoclonal antibody drug bevacizumab (BVZ), we designed and prepared a type of co-delivery nanoparticles for the oral administration of DTX and BVZ. Carboxymethyl chitosan (CMC) and poly(lactic-co-glycolic acid) (PLGA) were used as the carrier of DTX nanoparticles (CPNPDTX), and methoxy polyethylene glycol-poly (ß-amino ester) (mPEG-PAE) was used as the carrier of BVZ nanoparticles (PPNPBVZ). Then, the two nanoparticles were physically mixed in mass ratios to form mixed co-delivery nanoparticles, which was named as CPNPDTX&PPNPBVZ. The nanoparticles were characterized with pH-sensitive drug release property. CPNPDTX&PPNPBVZ could significantly increase the bioavailability of DTX and BVZ according to the more cellular uptake in Caco-2 cells and the higher absorption in the intestinal tissue. Compared with free DTX and BVZ, CPNPDTX&PPNPBVZ showed excellent cytotoxic effects on A549 cells. Our study revealed the potential of co-delivery nanoparticles of binary mixture of chemotherapeutic small molecule and macromolecular antibody drug as an oral administration therapeutic system.


Subject(s)
Antineoplastic Agents , Nanoparticles , Administration, Oral , Antineoplastic Agents/pharmacology , Bevacizumab/pharmacology , Caco-2 Cells , Docetaxel/pharmacology , Drug Carriers , Humans , Intestinal Absorption
9.
Toxicol Appl Pharmacol ; 414: 115411, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33476678

ABSTRACT

Di-2-ethylhexyl phosphate (DEHP) and its main toxic metabolite mono-2-ethylhexyl phthalate (MEHP) are the typical endocrine disrupting chemicals (EDCs) and widely affect human health. Our previous research reported that synthetic nonionic dietary emulsifier polysorbate 80 (P80, E433) had the promotional effect on the oral absorption of DEHP in rats. The aim of this study was to explore its mechanism of promoting oral absorption, focusing on the mucus barrier and mucosal barrier of the small intestine. A small molecule fluorescent probe 5-aminofluorescein-MEHP (MEHP-AF) was used as a tracker of MEHP in vivo and in vitro. First of all, we verified that P80 promoted the bioavailability of MEHP-AF in the long-term and low-dose exposure of MEHP-AF with P80 as a result of increasing the intestinal absorption of MEHP-AF. Afterwards, experimental results from Western blot, qPCR, immunohistochemistry, and immunofluorescence showed that P80 decreased the expression of proteins (mucus protein mucin-2, tight junction proteins claudin-1 and occludin) related to mucus barrier and mucosal barrier in the intestine, changed the integrity of intestinal epithelial cell, and increased the permeability of intestinal epithelial mucosa. These results indicated that P80 promoted the oral absorption of MEHP-AF by altering the intestinal mucus barrier and mucosal barrier. These findings are of great importance for assessing the safety risks of some food emulsifiers and clarifying the absorption mechanism of chemical pollutants in food, especially for EDCs.


Subject(s)
Diethylhexyl Phthalate/analogs & derivatives , Emulsifying Agents/toxicity , Epithelial Cells/drug effects , Intestinal Absorption/drug effects , Intestinal Mucosa/drug effects , Intestine, Small/drug effects , Polysorbates/toxicity , Animals , Biological Availability , Caco-2 Cells , Claudin-1/metabolism , Diethylhexyl Phthalate/pharmacokinetics , Diethylhexyl Phthalate/toxicity , Epithelial Cells/metabolism , Fluoresceins/metabolism , Fluorescent Dyes/metabolism , HT29 Cells , Humans , Intestinal Mucosa/metabolism , Intestine, Small/metabolism , Male , Mice, Inbred ICR , Mucin-2/metabolism , Occludin/metabolism , Permeability , Rats, Sprague-Dawley , Tissue Distribution , Toxicokinetics
10.
Zhongguo Zhong Yao Za Zhi ; 46(24): 6493-6501, 2021 Dec.
Article in Chinese | MEDLINE | ID: mdl-34994142

ABSTRACT

The present study investigated the effect of Modified Dihuang Decoction in improving ovarian reserve in mice through the Bcl-2-related mitochondrial apoptosis pathway. Forty-eight adult female BALB/c mice were randomly divided into the following six groups with eight mice in each group: a blank group, a model group, a femoston group(three cycles of treatment with 0.13 mg·kg~(-1) estradiol tablets for 2 days and 1.43 mg·kg~(-1) estradiol and dydrogesterone tablets for 3 days), and high(64.74 g·kg~(-1))-, medium(43.16 g·kg~(-1))-, and low-dose(21.58 g·kg~(-1)) Modified Dihuang Decoction groups. Mice in other groups except the blank group received a single intraperitoneal injection of 12 mg·kg~(-1) cyclophosphamide and 1.2 mg·kg~(-1) busulfan to induce a model of diminished ovarian reserve(DOR), while those in the blank group received an equal volume of normal saline. Mice were treated with corresponding drugs for 15 d from the 36 th day, once per day, and the mice in the blank group and the model group were treated with an equal volume of normal saline. The general condition and oestrous cycle were observed. The serum hormone levels were detected with the enzyme-linked immunosorbent assay(ELISA). The morphological changes of ovaries were observed by HE staining. Western blot was used to detect the protein expression of cysteinyl aspartate specific proteinase-9(caspase-9), cleaved caspase-3, Bcl-2 associated X protein(Bax), Bcl-2, superoxide dismutase-2(SOD-2), and glutathione peroxidase-1(GPx-1). The mRNA expression of Bax and Bcl-2 was detected by real-time fluorescence-based quantitative polymerase chain reaction(real-time PCR). The results showed that compared with the blank group, the model group showed body weight loss, disordered oestrous cycle, elevated serum levels of follicle-stimulating hormone(FSH) and luteinizing hormone(LH), reduced serum levels of estradiol(E_2), anti-mullerian hormone(AMH), and inhibin B(INHB), the declining number of ovarian follicles and granulosa layers, increased number of atretic follicles, up-regulated protein expression of caspase-9, cleaved caspase-3, and Bax and Bax mRNA expression in ovaries, and down-regulated protein expression of Bcl-2, SOD-2 and GPx-1, and Bcl-2 mRNA expression. Compared with the model group, the Modified Dihuang Decoction groups displayed restored body weight and oestrous cycle, decreased serum levels of FSH and LH, elevated serum levels of E_2, AMH, and INHB, increased number of ovarian follicles, thickened granulosa layers, and declining number of atretic follicles. Additionally, the protein expression of caspase-9, cleaved caspase-3, and Bax, and Bax mRNA expression was down-regulated, and the protein expression of Bcl-2, SOD-2, and GPx-1, and Bcl-2 mRNA expression was up-regulated. The results suggest that Modified Dihuang Decoction can regulate endocrine hormone, promote follicle growth and improve ovarian reserve by enhancing ovarian anti-oxidant capacity, inhibiting the Bcl-2-related mitochondrial apoptosis pathway, and further inhibiting cell apoptosis.


Subject(s)
Ovarian Reserve , Animals , Apoptosis , Female , Mice , Mice, Inbred BALB C , Ovarian Follicle , Ovary
11.
Cell Cycle ; 19(15): 1941-1951, 2020 08.
Article in English | MEDLINE | ID: mdl-32615888

ABSTRACT

Curcumin alleviates septic acute kidney injury (SAKI); however, the underlying mechanism remained unclear. To explore this, SAKI cell model and mice model were conducted by using LPS and cecal ligation and puncture (CLP), respectively. Cell counting kit-8 (CCK-8) and enzyme-linked immunosorbent assay (ELISA) assays indicated that LPS reduced the viability, but upregulated the levels of tumor necrosis factor (TNF)-α and interleukin (IL)-6, whereas Curcumin pretreatment had no effect on viability, but reduced the levels of TNF-α and IL-6. Further assays showed that Curcumin partly attenuated the LPS-induced injury as the viability was enhanced, TNF-α and IL-6 expressions and cell apoptosis rates were reduced. Western blot analysis indicated that Janus kinase (JAK) 2/signal transducer and activator of transcription (STAT) 3, p-65-NF-κB and cell apoptosis pathways were activated by LPS but suppressed by Curcumin. Mice SAKI model further indicated that the serum Cystatin C (Cys-C), creatinine (Cr) and blood urea nitrogen (BUN) were increased within 24 h of model construction while those indicators were decreased at 48 h. Pretreated with Curcumin, NF-κB inhibitor (PDTC) or JAK2 inhibitor (AG-490) could weaken the renal histological injury and the increased serum Cys-C, Cr and BUN, IL-6 and TNF-α induced by CLP. Moreover, PDTC, AG-490 and Curcumin all significantly reversed the previously increased expressions of p-JAK2/STAT3, p-p65 and proapoptotic proteins in the mice with AKI. The present study revealed that Curcumin attenuated SAKI through inhibiting NF-κB and JAK2/STAT3 signaling pathways, and proposed that Curcumin could be a potential therapeutic agent for treating SAKI.


Subject(s)
Acute Kidney Injury/drug therapy , Apoptosis , Curcumin/therapeutic use , Inflammation/pathology , Janus Kinase 2/metabolism , NF-kappa B/metabolism , STAT3 Transcription Factor/metabolism , Signal Transduction , Acute Kidney Injury/etiology , Acute Kidney Injury/pathology , Animals , Apoptosis/drug effects , Cecum/pathology , Cell Line , Cell Survival/drug effects , Curcumin/pharmacology , Humans , Inflammation/complications , Inflammation/drug therapy , Ligation , Lipopolysaccharides , Male , Mice, Inbred C57BL , Punctures , Sepsis/complications , Signal Transduction/drug effects
12.
Biomed Pharmacother ; 102: 494-501, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29579710

ABSTRACT

Luteal phase defects (LPD) are an important etiology of infertility which has increased in recent years. Studies have shown that bu-shen-zhu-yun decoction (BSZY-D) can lower the expression of estrogen receptor and progesterone receptor, in rats endometrium of embryonic implantation period, which upregulated by mifepristone, and improve uterine receptivity. The aim of present study was to determine the effect of BSZY-D on the synthesis and secretion of gonadotropic hormones in the anterior pituitary cells of rats. Rats were treated with saline (control) or BSZY-D two times/day for three estrous cycles by gavage. The cerebrospinal fluid (CSF) were collected for further cell treatment. The components in BSZY-D, serum and CSF were analysed by High Performance Liquid Chromatography (HPLC). Cells were either pretreated with normal CSF or BSZY-D/CSF before being stimulated with or without cetrorelix. The mRNA and proteins levels of receptors, hormones, and transcription factors were detected by RT-PCR, western blot analysis and immunostaining. We show that non-toxic concentrations of cetrorelix, a GnRH antagonist, can reduce the mRNA and protein levels of GnRHR, LH, and FSH. This effect could be reversed by the addition of BSZY-D/CSF. We also show decreased mRNA and protein expression of transcription factors, such as CREB, and Egr-1 and secretory vescicles, including SNAP-25 and Munc-18 upon treatment with cetrorelix could be reversed post co-treatment with BSZY-D/CSF. These results indicate that BSZY-D/CSF treatment led to increased levels of GnRHR, transcription factors, and secretory vesicles leading to increased secretion of FSH and LH. Thus, BSZY-D presents a promising candidate to treat luteal phase defects and infertility.


Subject(s)
Drugs, Chinese Herbal/pharmacology , Follicle Stimulating Hormone, beta Subunit/biosynthesis , Follicle Stimulating Hormone, beta Subunit/metabolism , Luteinizing Hormone, beta Subunit/biosynthesis , Luteinizing Hormone, beta Subunit/metabolism , Pituitary Gland, Anterior/cytology , Animals , Cell Line, Tumor , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Chromatography, High Pressure Liquid , Early Growth Response Protein 1/metabolism , Female , Gonadotropin-Releasing Hormone/analogs & derivatives , Gonadotropin-Releasing Hormone/pharmacology , Munc18 Proteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats, Sprague-Dawley , Receptors, LHRH/metabolism , Synaptosomal-Associated Protein 25/metabolism , Transcription Factors/metabolism , Up-Regulation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...