Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Clin Transl Neurol ; 7(12): 2356-2369, 2020 12.
Article in English | MEDLINE | ID: mdl-33128504

ABSTRACT

OBJECTIVE: Neuromodulatory anterior thalamic deep brain stimulation (DBS) is an effective therapy for intractable epilepsy, but few patients achieve complete seizure control with thalamic DBS. Other stimulation sites may be considered for anti-seizure DBS. We investigated bilateral low-frequency stimulation of the endopiriform nuclei (LFS-EPN) to control seizures induced by intracortically implanted cobalt wire in rats. METHODS: Chronic epilepsy was induced by cobalt wire implantation in the motor cortex unilaterally. Bipolar-stimulating electrodes were implanted into the EPN bilaterally. Continuous electroencephalography (EEG) was recorded using electrodes placed into bilateral motor cortex and hippocampus CA1 areas. Spontaneous seizures were monitored by long-term video-EEG, and behavioral seizures were classified based on the Racine scale. Continuous 1-Hz LFS-EPN began on the third day after electrode implantation and was controlled by a multi-channel stimulator. Stimulation continued until the rats had no seizures for three consecutive days. RESULTS: Compared with the control and sham stimulation groups, the LFS-EPN group experienced significantly fewer seizures per day and the mean Racine score of seizures was lower due to fewer generalized seizures. Ictal discharges at the epileptogenic site had significantly reduced theta band power in the LFS-EPN group compared to the other groups. INTERPRETATION: Bilateral LFS-EPN attenuates cobalt wire-induced seizures in rats by modulating epileptic networks. Reduced ictal theta power of the EEG broadband spectrum at the lesion site may be associated with the anti-epileptogenic mechanism of LFS-EPN. Bilateral EPN DBS may have therapeutic applications in human partial epilepsies.


Subject(s)
Electric Stimulation Therapy , Epilepsy/therapy , Motor Cortex/physiopathology , Piriform Cortex , Theta Rhythm/physiology , Animals , CA1 Region, Hippocampal/physiopathology , Deep Brain Stimulation , Disease Models, Animal , Electrocorticography , Implantable Neurostimulators , Male , Rats , Rats, Sprague-Dawley , Seizures
2.
Micromachines (Basel) ; 10(3)2019 Feb 28.
Article in English | MEDLINE | ID: mdl-30823425

ABSTRACT

The development of miniaturized devices for studying zebrafish embryos has been limited due to complicated fabrication and operation processes. Here, we reported on a microfluidic device that enabled the capture and culture of zebrafish embryos and real-time monitoring of dynamic embryonic development. The device was simply fabricated by bonding two layers of polydimethylsiloxane (PDMS) structures replicated from three-dimensional (3D) printed reusable molds onto a flat glass substrate. Embryos were easily loaded into the device with a pipette, docked in traps by gravity, and then retained in traps with hydrodynamic forces for long-term culturing. A degassing chamber bonded on top was used to remove air bubbles from the embryo-culturing channel and traps so that any embryo movement caused by air bubbles was eliminated during live imaging. Computational fluid dynamics simulations suggested this embryo-trapping and -retention regime to exert low shear stress on the immobilized embryos. Monitoring of the zebrafish embryogenesis over 20 h during the early stages successfully verified the performance of the microfluidic device for culturing the immobilized zebrafish embryos. Therefore, this rapid-prototyping, low-cost and easy-to-operate microfluidic device offers a promising platform for the long-term culturing of immobilized zebrafish embryos under continuous medium perfusion and the high-quality screening of the developmental dynamics.

3.
Nanoscale Res Lett ; 14(1): 38, 2019 Jan 28.
Article in English | MEDLINE | ID: mdl-30689063

ABSTRACT

An ultra-low specific on-resistance (Ron,sp) lateral double-diffused metal-oxide-semiconductor transistor (LDMOS) with enhanced dual-gate and partial P-buried layer is proposed and investigated in this paper. On-resistance analytical model for the proposed LDMOS is built to provide an in-depth insight into the relationship between the drift region resistance and the channel region resistance. N-buried layer is introduced under P-well to provide a low-resistance conduction path and reduce the resistance of the channel region significantly. Enhanced dual-gate structure is formed by N-buried layer while avoiding the vertical punch-through breakdown in off-state. Partial P-buried layer with optimized length is adopted under the N-drift region to extend vertical depletion region and relax the electric field peak in off-state, which enhances breakdown voltage (BV) with low drift region resistance. For the LDMOS with enhanced dual-gate and partial P-buried layer, the result shows that Ron,sp is 8.5 mΩ·mm2 while BV is 43 V.

4.
Small ; 14(28): e1800994, 2018 07.
Article in English | MEDLINE | ID: mdl-29806124

ABSTRACT

Biodegradable transient devices represent an emerging type of electronics that could play an essential role in medical therapeutic/diagnostic processes, such as wound healing and tissue regeneration. The associated biodegradable power sources, however, remain as a major challenge toward future clinical applications, as the demonstrated electrical stimulation and sensing functions are limited by wired external power or wireless energy harvesters via near-field coupling. Here, materials' strategies and fabrication schemes that enable a high-performance fully biodegradable magnesium-molybdenum trioxide battery as an alternative approach for an in vivo on-board power supply are reported. The battery can deliver a stable high output voltage as well as prolonged lifetime that could satisfy requirements of representative implantable electronics. The battery is fully biodegradable and demonstrates desirable biocompatibility. The battery system provides a promising solution to advanced energy harvesters for self-powered transient bioresorbable implants as well as eco-friendly electronics.


Subject(s)
Electric Power Supplies , Prostheses and Implants , Animals , Cell Line , Electrodes , Mice , Optical Imaging , Rats, Sprague-Dawley
5.
Micromachines (Basel) ; 9(1)2017 Dec 27.
Article in English | MEDLINE | ID: mdl-30393283

ABSTRACT

This paper presents the design of a wireless, implantable, multi-channel, programmable stimulator with arbitrary channel combination. A novel channel management module using a switch array is presented, enabling arbitrary channel configuration with a silicon area reduction of 81%. The chip was fabricated in a 0.18- µ m Taiwan semiconductor manufacturing company (TSMC) high voltage (HV) complementary metal⁻oxide semiconductor (CMOS) technology. A stimulator system was realized using the proposed integrated circuit (IC). A wireless communication link was established between a specified Android-based graphical user interface (GUI) and the proposed device for control of the stimulation pattern and wireless battery charging. The size of the entire system occupies a volume of only 14 mm × 14 mm × 4 mm (without the battery). Experimental results demonstrated a successful independent configuration between different channels, as well as an arbitrary channel combination, as expected.

SELECTION OF CITATIONS
SEARCH DETAIL
...