Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 4066, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744885

ABSTRACT

Terrestrial geothermal springs are physicochemically diverse and host abundant populations of Archaea. However, the diversity, functionality, and geological influences of these Archaea are not well understood. Here we explore the genomic diversity of Archaea in 152 metagenomes from 48 geothermal springs in Tengchong, China, collected from 2016 to 2021. Our dataset is comprised of 2949 archaeal metagenome-assembled genomes spanning 12 phyla and 392 newly identified species, which increases the known species diversity of Archaea by ~48.6%. The structures and potential functions of the archaeal communities are strongly influenced by temperature and pH, with high-temperature acidic and alkaline springs favoring archaeal abundance over Bacteria. Genome-resolved metagenomics and metatranscriptomics provide insights into the potential ecological niches of these Archaea and their potential roles in carbon, sulfur, nitrogen, and hydrogen metabolism. Furthermore, our findings illustrate the interplay of competition and cooperation among Archaea in biogeochemical cycles, possibly arising from overlapping functional niches and metabolic handoffs. Taken together, our study expands the genomic diversity of Archaea inhabiting geothermal springs and provides a foundation for more incisive study of biogeochemical processes mediated by Archaea in geothermal ecosystems.


Subject(s)
Archaea , Genome, Archaeal , Hot Springs , Metagenome , Metagenomics , Phylogeny , Hot Springs/microbiology , Archaea/genetics , Archaea/classification , China , Metagenomics/methods , Biodiversity , Hydrogen-Ion Concentration , Sulfur/metabolism , Temperature , Ecosystem
2.
Anal Chem ; 95(50): 18398-18406, 2023 12 19.
Article in English | MEDLINE | ID: mdl-38055795

ABSTRACT

Partial DNA duplex formation greatly impacts the quality of DNA hybridization and has been extensively studied due to its significance in many biological processes. However, traditional DNA sensing methods suffer from time-consuming amplification steps and hinder the acquisition of information about single-molecule behavior. In this work, we developed a plasmonic method to probe the hybridization process at a single base pair resolution and study the relationship between the complementarity of DNA analytes and DNA hybridization behaviors. We measured single-molecule hybridization events with Au NP-modified ssDNA probes in real time and found two hybridization adsorption events: stable and transient adsorption. The ratio of these two hybridization adsorption events was correlated with the length of the complementary sequences, distinguishing DNA analytes from different complementary sequences. By using dual incident angle excitation, we recognized different single-base complementary sequences. These results demonstrated that the plasmonic method can be applied to study partial DNA hybridization behavior and has the potential to be incorporated into the identification of similar DNA sequences, providing a sensitive and quantitative tool for DNA analysis.


Subject(s)
DNA, Single-Stranded , DNA , Base Pairing , Nucleic Acid Hybridization/methods , DNA/genetics , DNA, Single-Stranded/genetics , DNA Probes/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...