Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
1.
J Steroid Biochem Mol Biol ; 243: 106558, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38815727

ABSTRACT

The dynamic systems of mitochondria, including mitochondrial fusion and fission, are essential for ovarian endocrine and follicular development. Meanwhile, ERK1/2 signaling is an important mechanism mediating altered mitochondrial dynamics and steroidogenesis. The purpose of this study was to investigate the seasonal changes in ovarian steroidogenesis concerning EGFR-ERK1/2 signaling and mitochondrial dynamics of the muskrats (Ondatra zibethicus). The results showed that follicular development in the muskrats remained in the tertiary follicular stage during the non-breeding season, accompanied by a significant decrease in serum and ovarian concentrations of 17ß-estradiol and progesterone from the breeding season to the non-breeding season. EGF, EGFR, ERK1/2, p-ERK1/2, and mitochondrial dynamics regulators were mainly localized in granulosa cells and theca cells of muskrats during the breeding and non-breeding seasons. The mRNA levels of Egfr, Erk1/2, Mfn1/2, Opa1, Drp1, and steroidogenic enzymes in the ovaries were remarkably higher during the breeding season. The 17ß-estradiol concentrations in the serum and ovaries as well as the relative levels of Mfn1/2, Opa1, and Drp1 were positively associated with each other. Furthermore, transcriptomic analysis of the ovaries revealed that differentially expressed genes might be linked to steroid biosynthesis, estrogen signaling pathway, and mitochondrial membrane-related pathways. In conclusion, these results suggest that the up-regulation of mitochondrial dynamics regulators during the breeding season is closely associated with enhanced ovarian steroidogenesis in the muskrats, which may be regulated by upstream EGFR-ERK1/2 signaling.

2.
Int J Mol Sci ; 25(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38791193

ABSTRACT

Adiponectin is an important adipokine involved in glucose and lipid metabolism, but its secretion and potential role in regulating glucose utilization during ovarian development remains unclear. This study aims to investigate the mechanism and effects of follicle-stimulating hormones (FSHs) on adiponectin secretion and its following impact on glucose transport in the granulosa cells of rat ovaries. A range of experimental techniques were utilized to test our research, including immunoblotting, immunohistochemistry, immunofluorescence, ELISA, histological staining, real-time quantitative PCR, and transcriptome analysis. The immunohistochemistry results indicated that adiponectin was primarily located in the granulosa cells of rat ovaries. In primary granulosa cells cultured in vitro, both Western blot and immunofluorescence assays demonstrated that FSH significantly induced adiponectin secretion within 2 h of incubation, primarily via the PKA signaling pathway rather than the PI3K/AKT pathway. Concurrently, the addition of the AdipoR1/AdipoR2 dual agonist AdipoRon to the culture medium significantly stimulated the protein expression of GLUT1 in rat granulosa cells, resulting in enhanced glucose absorption. Consistent with these in vitro findings, rats injected with eCG (which shares structural and functional similarities with FSH) exhibited significantly increased adiponectin levels in both the ovaries and blood. Moreover, there was a notable elevation in mRNA and protein levels of AdipoRs and GLUTs following eCG administration. Transcriptomic analysis further revealed a positive correlation between the expression of the intraovarian adiponectin system and glucose transporter. The present study represents a novel investigation, demonstrating that FSH stimulates adiponectin secretion in ovarian granulosa cells through the PKA signaling pathway. This mechanism potentially influences glucose transport (GLUT1) and utilization within the ovaries.


Subject(s)
Adiponectin , Follicle Stimulating Hormone , Glucose , Granulosa Cells , Receptors, Adiponectin , Signal Transduction , Animals , Female , Adiponectin/metabolism , Adiponectin/genetics , Granulosa Cells/metabolism , Granulosa Cells/drug effects , Rats , Follicle Stimulating Hormone/metabolism , Glucose/metabolism , Receptors, Adiponectin/metabolism , Receptors, Adiponectin/genetics , Cells, Cultured , Glucose Transporter Type 1/metabolism , Glucose Transporter Type 1/genetics , Rats, Sprague-Dawley , Cyclic AMP-Dependent Protein Kinases/metabolism , Ovary/metabolism , Piperidines
3.
Metabolites ; 14(3)2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38535294

ABSTRACT

Hibernating mammals confront seasonal and harsh environmental shifts, prompting a cycle of pre-hibernation feeding and subsequent winter fasting. These adaptive practices induce diverse physiological adjustments within the animal's body. With the gut microbiota's metabolic activity being heavily reliant on the host's diet, this cycle's primary impact is on this microbial community. When the structure and composition of the gut microbiota changes, corresponding alterations in the interactions occur between these microorganisms and their host. These successive adaptations significantly contribute to the host's capacity to sustain relatively stable metabolic and immune functions in severe environmental conditions. A thorough investigation into the reciprocal interplay between the host and gut microbiota during hibernation-induced adaptive changes holds promise for unveiling new insights. Understanding the underlying mechanisms driving these interactions may potentially unlock innovative approaches to address extreme pathological conditions in humans.

4.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(4): 159469, 2024 May.
Article in English | MEDLINE | ID: mdl-38402945

ABSTRACT

This study aims to explore the relationship between altered vitamin D (VitD3) status and ovarian steroidogenesis in muskrats during the breeding and non-breeding seasons. During the breeding season, the ovaries of muskrats were observably enlarged and increased in weight, accompanied by elevated serum and ovarian VitD3 status. Vitamin D receptor (VDR), VitD3 metabolic molecules (CYP2R1, CYP27B1, and CYP24A1), and steroidogenic enzymes were immunolocalized in the ovarian cells of muskrats. The mRNA levels of VDR, CYP2R1, CYP27B1, and steroidogenic enzymes were considerably higher during the breeding season compared to the non-breeding season. RNA-seq analysis revealed a prominent enrichment of vitamin-related and ovarian steroidogenesis pathways. Furthermore, the addition of 1,25(OH)2D3 to the muskrat granulosa cells in vitro increased VDR and steroidogenic enzymes mRNA levels and enhanced the 17ß-estradiol level. Overall, these findings supported that VitD3 promotes the secretion of steroid hormones, thereby affecting seasonal changes in ovarian function in the muskrats.


Subject(s)
Ovary , Vitamin D , Animals , Female , Vitamin D/metabolism , Ovary/metabolism , 25-Hydroxyvitamin D3 1-alpha-Hydroxylase/genetics , 25-Hydroxyvitamin D3 1-alpha-Hydroxylase/metabolism , Arvicolinae/genetics , Arvicolinae/metabolism , Vitamins , Granulosa Cells/metabolism , RNA, Messenger/genetics
5.
Article in English | MEDLINE | ID: mdl-38228267

ABSTRACT

Seasonal reproduction is a widely used breeding strategy in wildlife, especially vertebrates inhabiting temperate regions. Generally, ambient temperature is considered a significant factor influencing the reproductive status of animals. In the present study, wild ground squirrels (Spermophilus dauricus), typical seasonal breeders, were used as an animal model to investigate the mechanism behind the impact of low ambient temperature on testicular function. To simulate the winter environment of wild ground squirrels, we lowered the temperature gradient in the rearing environment to 4 °C. At sampling, the body surface temperature of the squirrels reared under normal ambient temperature (22 °C, NAT group) and the low ambient temperature (4 °C, LAT group) were 31.5 °C and 22.8 °C, respectively. Subsequently, we conducted immunohistochemical assays, qPCR, and enzyme-linked immunosorbent assays (ELISA) to examine the variations in testicular functions, as well as the dynamics and functions of mitochondria, in the squirrels of NAT and LAT groups. As a result, the levels of positive immunostaining for PCNA, P21, and P27 were significantly lower in the testes of LAT group, while the levels of immunostaining for Cleaved Caspase-3 and TUNEL were significantly higher. In addition, the low-temperature treatment reduced the expression level of steroidogenesis-related genes, including LHR, FSHR, GATA-4, P450scc, and P450arom, and decreased the testosterone concentration. Moreover, markers of mitochondrial fission and fusion, DRP1 and MFN2, respectively, were increased in the testes of LAT group. Additionally, the mRNA level of SOD1 was notably higher in the testes of LAT group. In conclusion, the low ambient temperature inhibited spermatogenesis, steroidogenesis, as well as mitochondrial dynamics and functions in the testes of wild ground squirrels.


Subject(s)
Sciuridae , Testis , Male , Animals , Testis/metabolism , Sciuridae/physiology , Temperature , Testosterone/metabolism , Spermatogenesis , Seasons
6.
J Steroid Biochem Mol Biol ; 234: 106385, 2023 11.
Article in English | MEDLINE | ID: mdl-37633652

ABSTRACT

There is mounting evidence that vitamin D3 regulates female reproductive function critically, while little is known about the function of seasonally variable vitamin D3 in regulating ovarian steroidogenesis. This study examined the seasonal expressions of vitamin D receptor (VDR), vitamin D metabolic molecules (CYP2R1, CYP27B1, and CYP24A1), and steroidogenic enzymes (P450scc, 3ß-HSD, P450c17, and P450arom) in the ovaries of the wild ground squirrels (Citellus dauricus Brandt) during the different breeding seasons. VDR, CYP2R1, CYP27B1, and CYP24A1 were shown to be localized in different types of ovarian cells in the wild ground squirrels during the breeding and non-breeding seasons. Meanwhile, the mRNA levels of VDR, CYP2R1, CYP27B1, CYP11A1, HSD3B1, CYP17A1, and CYP19A1 in the ovaries were remarkably higher in the breeding season. Furthermore, RNA-seq data of ovaries revealed that 6036 genes were differentially expressed genes (DEGs); further analysis revealed that several DEGs known to be involved in ovarian steroidogenesis pathway and cellular response to vitamin D pathway were identified. In addition, during the breeding season, the concentrations of luteinizing hormone (LH), follicle-stimulating hormone (FSH), progesterone, and 17ß-estradiol were greater in the serum of the wild female ground squirrels. This observation was positively correlated with seasonal changes in the concentration of 25(OH)D3, supporting the fact that the 25(OH)D3 content in the ovaries was significantly higher in the breeding season. These findings suggested that seasonal changes in vitamin D3 might regulate the ovarian steroidogenesis of the wild female ground squirrels.


Subject(s)
Cholecalciferol , Ovary , Female , Animals , Cholecalciferol/metabolism , Seasons , 25-Hydroxyvitamin D3 1-alpha-Hydroxylase/genetics , 25-Hydroxyvitamin D3 1-alpha-Hydroxylase/metabolism , Vitamin D3 24-Hydroxylase/metabolism , Sciuridae/genetics , Sciuridae/metabolism , Vitamin D/metabolism
7.
Animals (Basel) ; 13(13)2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37444034

ABSTRACT

The Spermophilus dauricus, the wild Daurian ground squirrel, is known to exhibit seasonal breeding behavior. Although the importance of gut microbiota in animal digestion, metabolism, and immunity is well-established, the correlation between gut microbiota and seasonal breeding in this species remains inadequately explored. In the present study, using metagenomic sequencing technology, the compositions and functions of the gut microbiota of wild Daurian ground squirrels in different breeding seasons were explored. The dominant gut microbial phyla were Firmicutes and Bacteroidetes. The Firmicutes were predominant in the breeding season, whereas Bacteroidetes were predominant in the non-breeding season. At the genus level, Lactobacillus accumulated during the breeding season, whereas Odoribacter and Alistipes increased during the non-breeding season. GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genome) annotations indicated that genes in gut samples were highly associated with metabolic functions. The differential expression gene analysis showed that genes related to the phosphotransferase system, cysteine, and methionine metabolism were highly expressed during the breeding season, whereas the non-breeding season upregulated genes were enriched in starch and sucrose metabolism and bacterial chemotaxis pathways. In conclusion, this study could provide a reference for investigating gut microbiota in seasonal breeding animals and offer new insight into gut microbial function.

8.
Metabolites ; 13(2)2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36837868

ABSTRACT

The gut microbiota plays a crucial role in the nutrition, metabolism, and immune function of the host animal. The muskrat (Ondatra zibethicus) is a typical seasonal breeding animal. The present study performed a metagenomic analysis of cecum contents from muskrats in the breeding and non-breeding seasons. The results indicated that the breeding muskrats and non-breeding muskrats differed in gut microbiota structure and function. During the breeding season, the relative abundance of phylum Bacteroidetes, genus Prevotella, and genus Alistipes increased, while the relative abundance of phylum Firmicutes and phylum Actinobacteria decreased. The muskrat gut microbiota was enriched in the metabolism-related pathways, especially amino acid and vitamin metabolism, and genetically related metabolites in the breeding season. We presumed that the muskrat gut microbiota might seasonally change to secure reproductive activity and satisfy the metabolic demands of different seasons. This study could explore potential mechanisms by which gut microbiota affects reproduction. Moreover, this study may provide a new theoretical basis for the management of muskrat captive breeding.

9.
J Affect Disord ; 328: 312-323, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36740143

ABSTRACT

BACKGROUND: Many studies have performed assessments of genetic variants in the D2 dopamine receptor (DRD2) gene as risk factors for post-traumatic stress disorder (PTSD) and major depressive disorder (MDD). However, the results are inconsistent. This meta-analysis aimed to systematically summarize published data to evaluate the reliable association between the DRD2 genetic variants and the risk of PTSD and MDD. METHODS: A systematic literature search was conducted using the Web of Science, PubMed, Google Scholar, Excerpta Medica Database (EMBASE), Springer, ScienceDirect, Wiley Online Library, Cochrane Central Register of Controlled Trials, Chinese Biomedical Literature Database (CBM), WANFANG Data, CQVIP, and Chinese National Knowledge Infrastructure (CNKI) databases before January 1st, 2022. RESULTS: A total of 27 genetic variants in the DRD2 gene were retrieved, and 7 of them met the inclusion criteria for meta-analysis. Our meta-analysis results indicated that the rs1800497 (TaqIA) polymorphism was significantly associated with the increased risk of PTSD (Dominant model (A1A1 + A1A2 vs. A2A2): OR = 1.49, 95 % CI, 1.08-2.04 Z = 2.46, P = 0.014). Subgroup analysis for ethnicity suggested that a significantly increased risk of PTSD was observed in Asians (Dominant model (A1A1 + A1A2 vs. A2A2): OR = 1.39, 95 % CI, 1.08-1.79, Z = 2.60, P = 0.009) and Caucasians (Dominant model (A1A1 + A1A2 vs. A2A2): OR = 1.87, 95 % CI 1.02-3.41, Z = 2.04, P = 0.042). Meanwhile, we detected significant association strengths between the rs1799978 and rs2075652 polymorphisms in the DRD2 gene and MDD (for rs1799978, Homozygote comparison (GG vs. AA): OR = 0.60, 95 % CI = 0.37-0.97, Z = 2.08, P = 0.038; for rs2075652, Homozygote comparison (AA vs. GG): OR = 1.82, 95 % CI = 1.32-2.50, Z = 3.67, P < 0.001). Our cumulative meta-analyses indicated a continuous trend toward association strength with PTSD and MDD. CONCLUSIONS: This meta-analysis indicated that genetic variants in the DRD2 gene might potentially contribute to genetic susceptibility for PTSD and MDD. The utilization of DRD2 genetic variants as risk factors for PTSD and MDD requires further validation by large well-designed case-control studies.


Subject(s)
Depressive Disorder, Major , Stress Disorders, Post-Traumatic , Humans , Stress Disorders, Post-Traumatic/genetics , Polymorphism, Genetic , Risk Factors , Genetic Predisposition to Disease , Receptors, Dopamine D2
10.
Front Endocrinol (Lausanne) ; 14: 1123699, 2023.
Article in English | MEDLINE | ID: mdl-36824363

ABSTRACT

Many studies have shown roles for endoplasmic reticulum stress (ERS)/unfolded protein response (UPR) signaling cascades with ovarian folliculogenesis, and oocyte maturation. In this study, we investigated seasonal changes in ERS and ovarian steroidogenesis in the muskrats (Ondatra zibethicus) during the breeding season (BS) and non-breeding season (NBS). There were noticeable seasonal variations in the weight and size of muskrat ovaries with values higher in the BS than that in NBS. The circulating luteinizing hormone (LH), follicle-stimulating hormone (FSH), 17ß-estradiol, and progesterone of the female muskrats were higher during the BS. The RNA-seq data of ovaries during different seasons revealed 2580 differentially expressed genes, further analysis showed a prominent enrichment of ERS-related pathways and ovarian steroidogenesis pathway. Immunohistochemical results showed that GRP78 and steroidogenic enzymes (P450scc, 3ß-HSD, P450c17, and P450arom) existed in the various kinds of cells in muskrat ovaries during the BS and NBS. In ovaries from the BS, the mRNA levels of P450scc, P450arom, P450c17, and 3ß-HSD were considerably higher. Furthermore, the expression levels of oxidative stress-related genes (SOD2, CAT, and GPX1) and UPR signal genes (Bip/GRP78, ATF4, ATF6, and XBP1s) were increased strikingly higher during the BS in comparison with the NBS. However, the mRNA levels of CCAAT-enhancer-binding protein homologous protein (CHOP) and caspase-3 had no considerable difference between the BS and NBS. Taken together, these results suggested that UPR signaling associated with the seasonal changes in ovarian steroidogenesis is activated in the BS and the delicate balance in redox regulation is important for seasonal reproduction in the muskrats.


Subject(s)
Aromatase , Ovary , Animals , Female , Ovary/metabolism , Seasons , Aromatase/metabolism , Arvicolinae/genetics , Arvicolinae/metabolism , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress , RNA, Messenger/metabolism
11.
Integr Zool ; 18(1): 76-92, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35841626

ABSTRACT

The purpose of this study was to explore the variations in the circulating leptin concentrations of the wild ground squirrels in relation to seasonal changes in testicular activities. Hematoxylin-eosin staining showed all types of elongated spermatids and spermatogenic cells existed in the testis in April, while the primary spermatocytes and spermatogonia were most advanced stages of germ cells in June. In addition, the primary spermatocytes, secondary spermatocytes, and spermatogonia were most advanced stages of germ cells in September. The highest circulating leptin concentration was consistent with the maximum body weight results from accumulation of adipose tissue in September. The mRNA expression level of leptin receptor (Ob-R) and STAT3 was lowest in June, raised in September, and remained increased in April. Ob-R and STAT3 were stronger staining in the Leydig cells in July. Moreover, the concentrations of testosterone (T) showed the maximum values in April, the minimum values in June, and significant increases in September. Furthermore, it is worth noting that the levels of T increased with the mRNA levels of Ob-R, STAT3, StAR, and testicular steroidogenic enzymes (3ß-HSD, P450c17, and P450scc). Moreover, RNA-seq analyses of testis during the different periods showed that a total of 4209 genes were differentially expressed genes (DEGs); further analysis revealed that DEGs related with the Jak/STAT pathways and reproduction were altered. Taken together, the results suggested that the leptin regulated testicular function through the Jak/STAT pathways and testicular steroidogenic factor expressions.


Subject(s)
Leptin , Testis , Male , Animals , Testis/metabolism , Leptin/genetics , Leptin/metabolism , Seasons , Testosterone/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sciuridae/genetics
12.
Int J Mol Sci ; 23(23)2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36499026

ABSTRACT

The goal of this study is to explore the relationship between altered circulating adiponectin concentration, ovarian tissue morphology, ovarian steroidogenesis, and sex hormone production in ovaries of wild ground squirrels. The ovarian mass differed significantly during the breeding and non-breeding seasons, and the circulating estradiol and progesterone concentrations were significantly higher in the breeding season, while the circulating adiponectin level was significantly lower. The expression levels of gonadotropin receptors (FSHR and LHR) and steroidogenic enzymes (StAR, P450scc, P450arom, and 3ß-HSD) were significantly higher during the breeding season. Comparing the ovarian transcriptome data of wild ground squirrels between the two periods, we found that some differentially expressed genes were enriched for ovarian steroidogenesis and the adipocytokine signaling pathway, which correlated with our present results. Notably, the MAPK signaling pathway was also enriched and its related genes (Erk1, p38 Mapk, Jnk) were up-regulated by qPCR during the non-breeding season. These findings suggested that adiponectin may be involved in the regulation of seasonal changes in the ovarian function of wild ground squirrels, possibly by acting on the MAPK signaling pathway to regulate sex steroidogenesis in the ovaries.


Subject(s)
Adiponectin , Sciuridae , Female , Animals , Adiponectin/genetics , Adiponectin/metabolism , Sciuridae/genetics , Sciuridae/metabolism , Ovary , Seasons , Estradiol/metabolism
13.
Front Oncol ; 12: 992468, 2022.
Article in English | MEDLINE | ID: mdl-36313717

ABSTRACT

Background: The mechanism of cuproptosis has recently been reported in lipoylated proteins of the tricarboxylic acid (TCA) cycle. Besides, the role of copper was previously recognized in cancer progression. We evaluated the prognostic value of cuproptosis-related gene expression in hepatocellular carcinoma (HCC). Methods: Remarkable genes were selected both in differential expression analysis and Kaplan-Meier survival analysis from ninety-six cuproptosis-related genes using The Cancer Genome Atlas (TCGA) database. The relationships between clinical characteristics and gene expression were performed with Wilcoxon signed-rank test, Kruskal-Wallis test, and logistic regression. Clinicopathologic factors correlated with overall survival in HCCs conducting univariate and multivariate Cox regression analysis. Gene Expression Profiling Interactive Analysis 2 (GEPIA2) and Human Protein Atlas (HPA) databases were utilized to verify the results. Furthermore, Gene Set Enrichment Analysis (GSEA) identified the potential key pathways that dominate cuproptosis in HCC. Results: Elevated ATP7A, SLC25A3, SCO2, COA6, TMEM199, ATP6AP1, LIPT1, DLAT, PDHA1, MTF1, ACP1, FDX2, NUBP2, CIAPIN1, ISCA2 and NDOR1 expression, as well as declined AOC1, FDX1, MT-CO1, and ACO1 expression were significantly emerged in HCC tumor tissues and were significantly associated with HCCs poor survival. The expressions of screened cuproptosis-related genes were prominently related to clinical features. GSEA analysis reported many key signaling pathways (such as natural killer cell mediated cytotoxicity, TCA cycle, glutathione metabolism, ATP-binding cassette (ABC) transporters, Notch signaling pathway, ErbB signaling pathway, and metabolism of xenobiotics by cytochrome p450) were differentially enriched in HCCs with varying degrees of cuproptosis-related genes expression. Conclusions: The twenty cuproptosis-related genes might be utilized as new candidate prognostic biomarkers for HCC.

14.
Mol Biol Rep ; 49(11): 10269-10277, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36097121

ABSTRACT

BACKGROUND: The purpose of this study was to investigate the relationship between the expression of autophagy-related genes and prognosis in hepatocellular carcinoma (HCC). METHODS AND RESULTS: We selected three autophagy-related genes (ATG3, ATG7, and ATG9A) from gene expression data of liver cancer patients in The Cancer Genome Atlas (TCGA) database by Kaplan-Meier survival analysis, univariate and multivariate Cox regression analysis, and Gene Set Enrichment Analysis (GSEA). Human Protein Atlas (HPA) and Gene Expression Profiling Interactive Analysis (GEPIA) databases were applied to testify the credibility of our results. The expression levels of ATG3, ATG7, and ATG9A were verified by real-time quantitative PCR (RT-qPCR) in normal liver cells (L02) and three HCC cell lines (HepG2, Hep3b, and Li-7). Data analysis results from TCGA showed high ATG3, ATG7, ATG9A expression in HCC tumor tissues. Kaplan-Meier survival analysis showed that the survival rate of the high expression group of ATG3, ATG7, and ATG9A was all significantly lower than the low expression group. GSEA analysis showed that many signaling pathways (such as the regulation of autophagy, glycine serine and threonine metabolism, pathways in cancer, mitogen-activated protein kinase (MAPK) signaling pathway, mammalian target of rapamycin (mTOR) signaling pathway, as well as P53 signaling pathway) were differentially enriched in HCCs with ATG3, ATG7, and ATG9A expression. GEPIA and RT-qPCR also identified that the mRNA expression level of ATG3, ATG7, and ATG9A in normal liver cells were significantly lower than in HCC cells. High protein expression of ATG3, ATG7, and ATG9A was displayed in HCCs from the HPA database. CONCLUSIONS: The ATG3, ATG7, ATG9A might be utilized as prognostic biomarkers for liver cancer.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/metabolism , Prognosis , Gene Expression Profiling , Autophagy/genetics , Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic/genetics
15.
Chem Biol Interact ; 363: 110001, 2022 Aug 25.
Article in English | MEDLINE | ID: mdl-35654127

ABSTRACT

3-Methyl-4-Nitrophenol (PNMC) is the main degradation product of organophosphate insecticide fenitrothion and a major component of diesel exhaust particles, which is now becoming a widely spread environmental endocrine disruptor. Previous reports showed PNMC exposure can affect the female reproductive system and ovarian function; however, the mechanism remains unclear. The main purpose of this study is to clarify the mechanism underlying the adverse effects of neonatal PNMC treatment on ovarian functions. The neonatal female mice were exposed to 10 mg/kg PNMC and the ovaries were collected on the 7th day after birth. The changes of follicular composition in mice ovaries were analyzed by histological staining, which showed that the proportion of primordial follicles in the ovaries treated by PNMC decreased, while the proportion of secondary follicles increased. The ovarian function was also investigated by detecting the expressions of steroidogenic enzymes (Star, Cyp11a1, Hsd3b1, Cyp17a1, Cyp19a1), gonadotropin receptors (Fshr and Lhr), androgen receptor (Ar), and estrogen receptors (Esr1 and Esr2) by immunohistochemistry or/and real-time quantitative PCR. The expression of Hsd3b1, Cyp17a1 and Esr2 were increased significantly in the PNMC exposed ovaries. Moreover, the expression patterns of clock genes (Bmal1, Clock, Per1, Per2, Cry1, Cry2 and Nr1d1) were disrupted in the ovaries after PNMC exposure. Furthermore, either the expression of DNA Methyltransferase Dnmt3b, or the methylation ratio of CpG islands in the upstream of Cry1 promoter regions were significantly decreased in PNMC exposed ovaries. Altogether, these results indicate that PNMC exposure affects follicle development and ovarian function by interfering with the epigenetic modification and disrupting the expression of clock genes.


Subject(s)
Cresols , Vehicle Emissions , Animals , Female , Mice , Multienzyme Complexes , Ovarian Follicle
16.
Eur J Histochem ; 66(2)2022 May 02.
Article in English | MEDLINE | ID: mdl-35502591

ABSTRACT

Pituitary adenylate cyclase-activating polypeptide (PACAP) plays an important role in the steroidogenesis and spermatogenesis in the testis through its receptors PAC1, VPAC1, and VPAC2. In this study, we investigated the seasonal expressions of PACAP, PAC1, VPAC1, VPAC2, luteinizing hormone receptor (LHR), follicle stimulating hormone receptor (FSHR), steroidogenic acute regulatory protein (StAR), 3ß-hydroxysteroid dehydrogenase (3ß-HSD), and CYP17A1 in the testis of the male muskrat during the breeding season and the non-breeding season. Histologically, we found the presence of Leydig cells, Sertoli cells and all kinds of germ cells in the testis during the breeding season but only Leydig cells, Sertoli cells, spermatogonia and primary spermatocyte during the non-breeding season. The immunohistochemical localizations of PACAP and VPAC1 were identified in the Leydig cells, spermatogonia and spermatozoa during the breeding season while only in Leydig cells and spermatogonia during the non-breeding season, and PAC1 and VPAC2 were localized in the Leydig cells in both seasons, in which LHR, StAR, 3ß-HSD and CYP17A1 were also expressed. Meanwhile, protein and mRNA expression levels of PACAP, PAC1, VPAC1, VPAC2, LHR, FSHR, StAR, 3ß-HSD and CYP17A1 in the testis during the breeding season were significantly higher than those during the non-breeding season. These results suggested that PACAP may involve in the regulation of, steroidogenesis and spermatogenesis via an endocrine, autocrine or paracrine manner in the testis of the muskrat.


Subject(s)
Pituitary Adenylate Cyclase-Activating Polypeptide , Testis , Animals , Arvicolinae/metabolism , Male , Pituitary Adenylate Cyclase-Activating Polypeptide/genetics , Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Seasons , Spermatogenesis , Testis/metabolism
17.
Eur J Histochem ; 66(1)2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35057584

ABSTRACT

G-protein-coupled receptor 41 (GPR41) and G-protein-coupled receptor 43 (GPR43) are important short-chain fatty acids (SCFAs) receptors. Previous studies indicated that GPR41 and GPR43 are involved in the secretion of gastrointestinal peptides, and glucose and lipid metabolism, and are closely related to obesity and type II diabetes, and other diseases. The purpose of the study was to explore the relationship between the GPR41 and GPR43 and seasonal breeding, and provide new prospects for further exploring the nutritional needs of breeding. We identified the localization and expression levels of GPR41 and GPR43 in the colon of the wild ground squirrels (Spermophilus dauricus) both in the breeding season and non-breeding season. The histological results revealed that the lumen diameter of the colon had obvious seasonal changes, and the diameter of the colonic lumen in the non-breeding season was larger than that in the breeding season. Immunohistochemical staining suggested GPR41 and GPR43 have expressed in the simple layer columnar epithelium. In addition, compared with the breeding season, the mRNA and protein expression levels of GPR41 and GPR43 in the colon were higher during the non-breeding season. In general, these results indicated GPR41 and GPR43 might play a certain role in regulating seasonal breeding.


Subject(s)
Diabetes Mellitus, Type 2 , Sciuridae , Animals , Colon , Fatty Acids, Volatile/metabolism , Receptors, G-Protein-Coupled/metabolism , Sciuridae/metabolism , Seasons
18.
J Steroid Biochem Mol Biol ; 218: 106058, 2022 04.
Article in English | MEDLINE | ID: mdl-35017044

ABSTRACT

Previous studies found that testosterone was converted to dihydrotestosterone under the catalysis of 5α-reductase in the prostate of the wild ground squirrels. As a result, this study explored further whether testosterone could be converted to estrogen to affect the prostate gland function in wild ground squirrels. Histological observation showed that the area of epithelial cells and the prostatic secretory lumen were enlarged significantly during the breeding period. Transcriptome analysis revealed that the differentially expressed genes in the prostate were concentrated in the estrogen signaling pathway. Immunohistochemical analysis showed that the immunoreactivities of P450arom were detected in the stromal cells during the breeding and non-breeding periods, indicating the possible conversion of androgen into estrogen locally. Moreover, the immunolocalizations of ERα and ERß were detected mainly in the epithelial or stromal cells. Additionally, qPCR analysis displayed that the mRNA expression level of P450arom in the prostate was significantly higher during the breeding period than that in the non-breeding period. Consistently, the concentration of 17ß-estradiol (E2) was higher in the prostate during the breeding period than the non-breeding period, which is positively correlated with the seasonal changes of prostatic weight. In conclusion, the present results indicated that estrogen produced by P450arom presented in stromal cells might regulate the growth and function of the prostate gland via the locally expressed estrogen receptors in wild ground squirrels. The results of this study were momentous for further uncovering the mechanism of the seasonal regulated by signal pathways in the prostate of wild ground squirrels.


Subject(s)
Aromatase , Sciuridae , Animals , Aromatase/genetics , Aromatase/metabolism , Estrogen Receptor beta/metabolism , Estrogens/metabolism , Male , Prostate/metabolism , Sciuridae/genetics , Sciuridae/metabolism , Seasons , Signal Transduction , Testosterone/metabolism
19.
Mol Biol Rep ; 49(3): 2209-2215, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35040005

ABSTRACT

BACKGROUND: The purpose of the experiment was to explore the localization and seasonal expression of extracellular signal regulated kinase (ERK) in the colonic tissue of wild ground squirrels (Spermophilus dauricus). METHODS AND RESULTS: Hematoxylin-eosin staining, immunohistochemistry, real-time quantitative PCR and Western blotting were used in this experiment. The histological results showed that the diameter of the colon lumen enlarged and the number of glandular cells increased in the non-breeding season. It was found in the immunochemical results that both ERK1/2 and pERK1/2 were expressed in the cytoplasm of goblet cells and intestinal epithelial cells, while pERK1/2 was also expressed in the nucleus of them. The immune localization of both was more obvious in the non-breeding season, especially in intestinal epithelial cells. Real-time quantitative PCR and Western blotting showed that ERK1/2 and pERK1/2 were seasonally highly expressed in the non-breeding season. CONCLUSIONS: The expression of ERK1/2 and pERK1/2 was seasonal changes and had significant increases in the non-breeding season. This study revealed that ERK1/2 had potential roles in the colon to the adaptation of seasonal changes in wild ground squirrels.


Subject(s)
Extracellular Signal-Regulated MAP Kinases , Sciuridae , Animals , Colon , Extracellular Signal-Regulated MAP Kinases/metabolism , Immunohistochemistry , Sciuridae/genetics , Seasons
20.
Animals (Basel) ; 11(9)2021 Sep 13.
Article in English | MEDLINE | ID: mdl-34573650

ABSTRACT

Seasonal breeding is a normal phenomenon in which animals adapt to natural selection and reproduce only in specific seasons. Large studies have reported that the gut microbiota is closely related to reproduction. The purpose of this study was to explore the distinct taxonomy and function of the gut microbiota in the breeding and non-breeding seasons of the wild ground squirrel (Spermophilus dauricus). The 16S rRNA gene sequencing technology was utilized to sequence the gut microbiota of the wild ground squirrel. PICRUSt analysis was also applied to predict the function of the gut microbiota. The results suggested that the main components of the gut microbiota in all samples were Firmicutes (61.8%), Bacteroidetes (32.4%), and Proteobacteria (3.7%). Microbial community composition analyses revealed significant differences between the breeding and non-breeding seasons. At the genus level, Alistipes, Mycoplasma, Anaerotruncus, and Odoribacter were more abundant in the non-breeding season, while Blautia and Streptococcus were more abundant in the breeding season. The results of a functional prediction suggested that the relative abundance of functional categories that were related to lipid metabolism, carbohydrate metabolism, and nucleotide metabolism increased in the breeding season. The relative abundance of energy metabolism, transcription, and signal transduction increased in the non-breeding season. Overall, this study found differences in the taxonomy and function of the gut microbiota of the wild ground squirrel between the breeding and non-breeding seasons, and laid the foundation for further studies on the relationship between the gut microbiota and seasonal breeding.

SELECTION OF CITATIONS
SEARCH DETAIL
...