Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Graefes Arch Clin Exp Ophthalmol ; 260(2): 645-653, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34427740

ABSTRACT

PURPOSES: North Carolina macular dystrophy (NCMD) is a rare autosomal dominant inherited disorder characterized by macular impairment with a variety of phenotypic manifestations. The aims of this study were to assess the clinical features of a Chinese family with NCMD and to identify the underlying genetic cause of the disease. METHODS: Three patients from a Chinese family were included in this study. Detailed ophthalmological examinations were performed, including best corrected visual acuity (BCVA), slit lamp, dilated indirect ophthalmoscopy, fundus photography, optical coherence tomography (OCT), fundus autofluorescence, full-field electroretinography (ERG), and electrooculography (EOG). Genomic DNA was extracted from peripheral blood samples. Whole-genome sequencing and long-read genome sequencing were applied to detect the pathogenic variants. Sanger sequencing was performed to confirm the breakpoints. RESULTS: All three patients had macular involvement ranging from patchy yellowish-white lesions to big-area thinning, which are typical for NCMD. The BCVA ranged from 20/50 to 20/20. OCT revealed varying degrees of macular structure disorganization. The ERG responses were normal, and the Arden ration of the EOG was reduced. A novel 134.6 kb (g.99932464-100067110dup) tandem duplication on chromosome 6 (NC_000006.11) encompassing the entire CCNC and PRDM13 genes and a DNase 1 hypersensitivity site in the MCDR1 locus was identified. CONCLUSION: A novel large tandem duplication in MCDR1 locus was confirmed in a Chinese family with NCMD with a variety of macular phenotypes.


Subject(s)
Corneal Dystrophies, Hereditary , China/epidemiology , Electroretinography , Humans , Pedigree , Tomography, Optical Coherence
2.
Am J Med Genet A ; 188(3): 948-952, 2022 03.
Article in English | MEDLINE | ID: mdl-34821467

ABSTRACT

Thiamine-responsive megaloblastic anemia syndrome (TRMA) is an autosomal recessive disorder, inherited by the defective SLC19A2 gene that encodes a high-affinity thiamine transporter (THTR-1). TRMA is characterized by the occurrence of classical triad manifestations including megaloblastic anemia, diabetes mellitus, and sensorineural deafness. In addition to the systemic manifestations, ophthalmic features can be present and include retinitis pigmentosa, optic atrophy, cone-rod dystrophy, maculopathy, and Leber congenital amaurosis. Here we report a 6-year-old boy presenting severe early-onset retinal dystrophy with the initial diagnosis of Leber congenital amaurosis, which followed for 12 years. Diabetes mellitus occurred 3 years after vision problem. Eosinophilic granuloma of the left scapula was confirmed at 13 years old. Whole-exome sequencing was performed to identify two novel compound heterozygous variants c.725dupC (p.Ala243Serfs*3) and c.121G>A (p.Gly41Ser) in SLC19A2 gene (NM_006996.3). Oral thiamine supplementation treatment was initiated at 13 years. This case demonstrates Leber congenital amaurosis can present as the first clinical feature before systemic manifestations. Phenotypic variety should be aware and multidisciplinary teamwork and regular follow-up are important for TRMA patient care.


Subject(s)
Anemia, Megaloblastic , Diabetes Mellitus , Hearing Loss, Sensorineural , Leber Congenital Amaurosis , Adolescent , Anemia, Megaloblastic/diagnosis , Anemia, Megaloblastic/drug therapy , Anemia, Megaloblastic/genetics , Child , China , Diabetes Mellitus/diagnosis , Diabetes Mellitus/genetics , Hearing Loss, Sensorineural/diagnosis , Hearing Loss, Sensorineural/drug therapy , Hearing Loss, Sensorineural/genetics , Humans , Leber Congenital Amaurosis/diagnosis , Leber Congenital Amaurosis/drug therapy , Leber Congenital Amaurosis/genetics , Male , Membrane Transport Proteins , Thiamine/therapeutic use , Thiamine Deficiency/congenital
3.
Ophthalmic Genet ; 39(5): 569-576, 2018 10.
Article in English | MEDLINE | ID: mdl-29952689

ABSTRACT

BACKGROUND: Autosomal-dominant optic atrophy (ADOA) is one of the most common types of inherited optic atrophy. We identify OPA1 pathogenic variants and assess the clinical features of a cohort of Chinese ADOA patients Materials and Methods: Detailed clinical evaluations were performed and genomic DNA was extracted from peripheral blood for all the participants. Sanger sequencing was used to analyze all exons and exon/intron junctions of OPA1 for eight pedigrees. Target exome capture plus next-generation sequencing (NGS) were applied for one atypical family with photophobia. Reverse transcription polymerase chain reaction was carried out to further characterize the mRNA change of selected splicing alteration. RESULTS: All 17 patients had impaired vision and optic-disk pallor; however, the clinical severity varied markedly. Two patients complicated with hearing loss. Six novel and two reported pathogenic variants in OPA1 (GenBank Accession No. NM_130837.2) were identified including four nonsynonymous variants (c.2400T > G, c.1468T > C, c.1567A > G and c.1466T > C), two splicing variants (c.2984-1_2986delGAGA and c.2983 + 5G > A), one small deletion (c.2960_2968delGCGTTCAAC), and one small insertion (c.3009_3010insA). RNA analysis revealed the splicing variant c.2984-1_2986delGAGA caused small deletion of mRNA (r.2983_2988del). CONCLUSIONS: ADOA patients presented variable clinical manifestations. Novel OPA1 pathogenic variants are the main genetic defect for Chinese ADOA cases. NGS may be a useful molecular testing tool for atypical ADOA.


Subject(s)
Asian People/genetics , GTP Phosphohydrolases/genetics , Mutation , Optic Atrophy, Autosomal Dominant/genetics , Adolescent , Adult , Child , Child, Preschool , DNA Mutational Analysis , Female , Humans , Infant , Male , Middle Aged , Optic Atrophy, Autosomal Dominant/pathology , Pedigree , Prognosis , Young Adult
4.
Sci Rep ; 8(1): 2398, 2018 02 05.
Article in English | MEDLINE | ID: mdl-29402928

ABSTRACT

Nance-Horan syndrome is a rare X-linked recessive inherited disease with clinical features including severe bilateral congenital cataracts, characteristic facial and dental abnormalities. Data from Chinese Nance-Horan syndrome patients are limited. We assessed the clinical manifestations of a Chinese Nance-Horan syndrome pedigree and identified the genetic defect. Genetic analysis showed that 3 affected males carried a novel small deletion in NHS gene, c.263_266delCGTC (p.Ala89TrpfsTer106), and 2 female carriers were heterozygous for the same variant. All 3 affected males presented with typical Nance-Horan syndrome features. One female carrier displayed lens opacities centered on the posterior Y-suture in both eyes, as well as mild dental abnormalities. We recorded the clinical features of a Chinese Nance-Horan syndrome family and broadened the spectrum of mutations in the NHS gene.


Subject(s)
Cataract/congenital , Cataract/genetics , Genetic Diseases, X-Linked/genetics , Lens, Crystalline/metabolism , Nuclear Proteins/genetics , Sequence Deletion , Tooth Abnormalities/genetics , Adult , Asian People , Base Sequence , Cataract/ethnology , Cataract/pathology , Chromosomes, Human, X/chemistry , Dentition, Permanent , Female , Gene Expression , Genes, Recessive , Genetic Diseases, X-Linked/ethnology , Genetic Diseases, X-Linked/pathology , Heterozygote , Homozygote , Humans , Lens, Crystalline/pathology , Male , Membrane Proteins , Middle Aged , Nuclear Proteins/metabolism , Pedigree , Tooth Abnormalities/ethnology , Tooth Abnormalities/pathology
5.
Sci Rep ; 7(1): 7051, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28765615

ABSTRACT

Inherited retinal dystrophies (IRDs) are a clinically and genetically heterogeneous group of Mendelian disorders primarily affecting photoreceptor cells. The same IRD-causing variant may lead to different retinal symptoms, demonstrating pleiotropic phenotype traits influenced by both underlying genetic and environmental factors. In the present study, we identified four unrelated IRD families with the HK1 p.E851K variant, which was previously reported to cause autosomal dominant retinitis pigmentosa (RP), and described their detailed clinical phenotypes. Interestingly, we found that in addition to RP, this particular variant can also cause dominant macular dystrophy and cone-rod dystrophy, which primarily affect cone photoreceptors instead of rods. Our results identified pleiotropic effects for an IRD-causing variant and provide more insights into the involvement of a hexokinase in retinal pathogenesis.


Subject(s)
Biological Variation, Population , Hexokinase/genetics , Retinal Dystrophies/genetics , Retinal Dystrophies/pathology , Mutation, Missense
6.
Hum Mutat ; 38(11): 1521-1533, 2017 11.
Article in English | MEDLINE | ID: mdl-28714225

ABSTRACT

The genetic heterogeneity of Mendelian disorders results in a significant proportion of patients that are unable to be assigned a confident molecular diagnosis after conventional exon sequencing and variant interpretation. Here, we evaluated how many patients with an inherited retinal disease (IRD) have variants of uncertain significance (VUS) that are disrupting splicing in a known IRD gene by means other than affecting the canonical dinucleotide splice site. Three in silico splice-affecting variant predictors were leveraged to annotate and prioritize variants for splicing functional validation. An in vitro minigene system was used to assay each variant's effect on splicing. Starting with 745 IRD patients lacking a confident molecular diagnosis, we validated 23 VUS as splicing variants that likely explain disease in 26 patients. Using our results, we optimized in silico score cutoffs to guide future variant interpretation. Variants that alter base pairs other than the canonical GT-AG dinucleotide are often not considered for their potential effect on RNA splicing but in silico tools and a minigene system can be utilized for the prioritization and validation of such splice-disrupting variants. These variants can be overlooked causes of human disease but can be identified using conventional exon sequencing with proper interpretation guidelines.


Subject(s)
Exons , Gene Expression , Genes, Reporter , Genetic Diseases, Inborn/genetics , Genetic Predisposition to Disease , Genetic Variation , RNA Splicing , Alleles , Chromosome Mapping , Computational Biology/methods , Genetic Association Studies , Genetic Diseases, Inborn/diagnosis , Genotype , High-Throughput Nucleotide Sequencing , Humans , Molecular Sequence Annotation , Pedigree , Reproducibility of Results
7.
Am J Hum Genet ; 100(4): 592-604, 2017 Apr 06.
Article in English | MEDLINE | ID: mdl-28285769

ABSTRACT

Pre-mRNA splicing factors play a fundamental role in regulating transcript diversity both temporally and spatially. Genetic defects in several spliceosome components have been linked to a set of non-overlapping spliceosomopathy phenotypes in humans, among which skeletal developmental defects and non-syndromic retinitis pigmentosa (RP) are frequent findings. Here we report that defects in spliceosome-associated protein CWC27 are associated with a spectrum of disease phenotypes ranging from isolated RP to severe syndromic forms. By whole-exome sequencing, recessive protein-truncating mutations in CWC27 were found in seven unrelated families that show a range of clinical phenotypes, including retinal degeneration, brachydactyly, craniofacial abnormalities, short stature, and neurological defects. Remarkably, variable expressivity of the human phenotype can be recapitulated in Cwc27 mutant mouse models, with significant embryonic lethality and severe phenotypes in the complete knockout mice while mice with a partial loss-of-function allele mimic the isolated retinal degeneration phenotype. Our study describes a retinal dystrophy-related phenotype spectrum as well as its genetic etiology and highlights the complexity of the spliceosomal gene network.


Subject(s)
Abnormalities, Multiple/genetics , Cyclophilins/genetics , Mutation , Peptidylprolyl Isomerase/genetics , Retinal Degeneration/genetics , Adolescent , Animals , Child , Child, Preschool , Cyclophilins/metabolism , Female , Humans , Male , Mice , Pedigree , Peptidylprolyl Isomerase/metabolism , Young Adult
8.
Sci Rep ; 7: 33713, 2017 02 17.
Article in English | MEDLINE | ID: mdl-28211458

ABSTRACT

X-linked ocular albinism (OA1) is an X-linked inherited disease characterized by hypopigmentation of the fundus and nystagmus. Our study performed mutation analysis of the G protein-coupled receptor 143 gene (GPR143) and assessed the clinical characteristics of OA1 in three Chinese families. Three novel mutations, c.333_360+14del42insCTT, c.276G>A (p.W92X), and c.793C>T (p.R265X), were identified in GPR143 by PCR followed by Sanger sequencing in these families. All affected individuals presented with nystagmus, photophobia, poor visual acuity, foveal hypoplasia and varying degrees of hypopigmentation of the fundus. The fundus of female carriers showed pigmented streaks alternating with hypopigmented streaks. These results allowed us to expand the spectrum of mutations in GPR143 and phenotypes associated with ocular albinism.


Subject(s)
Albinism, Ocular/genetics , Albinism, Ocular/pathology , Eye Proteins/genetics , Family Health , Membrane Glycoproteins/genetics , Asian People , DNA Mutational Analysis , Humans , Polymerase Chain Reaction , Polymorphism, Single Nucleotide , Sequence Analysis, DNA
9.
J Med Genet ; 54(3): 190-195, 2017 03.
Article in English | MEDLINE | ID: mdl-27627988

ABSTRACT

BACKGROUND: Usher syndrome is a genetically heterogeneous disorder featured by combined visual impairment and hearing loss. Despite a dozen of genes involved in Usher syndrome having been identified, the genetic basis remains unknown in 20-30% of patients. In this study, we aimed to identify the novel disease-causing gene of a distinct subtype of Usher syndrome. METHODS: Ophthalmic examinations and hearing tests were performed on patients with Usher syndrome in two consanguineous families. Target capture sequencing was initially performed to screen causative mutations in known retinal disease-causing loci. Whole exome sequencing (WES) and whole genome sequencing (WGS) were applied for identifying novel disease-causing genes. RT-PCR and Sanger sequencing were performed to evaluate the splicing-altering effect of identified CEP78 variants. RESULTS: Patients from the two independent families show a mild Usher syndrome phenotype featured by juvenile or adult-onset cone-rod dystrophy and sensorineural hearing loss. WES and WGS identified two homozygous rare variants that affect mRNA splicing of a ciliary gene CEP78. RT-PCR confirmed that the two variants indeed lead to abnormal splicing, resulting in premature stop of protein translation due to frameshift. CONCLUSIONS: Our results provide evidence that CEP78 is a novel disease-causing gene for Usher syndrome, demonstrating an additional link between ciliopathy and Usher protein network in photoreceptor cells and inner ear hair cells.


Subject(s)
Cell Cycle Proteins/genetics , High-Throughput Nucleotide Sequencing , Retinitis Pigmentosa/genetics , Usher Syndromes/genetics , Adult , Child , Consanguinity , Exome/genetics , Female , Frameshift Mutation , Genome, Human , Hair Cells, Auditory, Inner/pathology , Homozygote , Humans , Male , Pedigree , Retinitis Pigmentosa/pathology , Usher Syndromes/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...