Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Micromachines (Basel) ; 14(7)2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37512790

ABSTRACT

In recent years, biometric radar has gained increasing attention in the field of non-touch vital sign monitoring due to its high accuracy and strong ability to detect fine-grained movements. However, most current research on biometric radar can only achieve heart rate or respiration rate monitoring in static environments, which have strict monitoring requirements and single monitoring parameters. Moreover, most studies have not applied the collected data despite their significant potential for applications. In this paper, we introduce a non-touch motion-robust vital sign monitoring system via ultra-wideband (UWB) radar based on deep learning. Nmr-VSM not only enables multi-dimensional vital sign monitoring under human motion environments but also implements cardiac anomaly detection. The design of Nmr-VSM includes three key components. Firstly, we design a UWB radar that can perform multi-dimensional vital sign monitoring, including heart rate, respiratory rate, distance, and motion status. Secondly, we collect real experimental data and analyze the impact of eight factors, such as motion status and distance, on heart rate monitoring. We then propose a deep neural network (DNN)-based heart rate data correction model that achieves high robustness in motion environments. Finally, we model the heart rate variability (HRV) of the human body and propose a convolutional neural network (CNN)-based anomaly detection model that achieves low-latency detection of heart diseases, such as ventricular tachycardia and ventricular fibrillation. Experimental results in a real environment demonstrate that Nmr-VSM can not only accurately monitor heart rate but also achieve anomaly detection with low latency.

2.
Micromachines (Basel) ; 14(3)2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36985032

ABSTRACT

Due to the strong plasticity of Inconel 718 and the significant size effect of micromachining, a large number of burrs will be produced in traditional processing. The addition of ultrasonic vibration during machining can reduce the burr problem. The mechanism of burr generation in traditional micromilling (TMM) and ultrasonic vibration-assisted micromilling (UVAMM) was analyzed by simulation, and verified by corresponding experiments. It is found that applying high-frequency ultrasonic vibration in the milling feed direction can reduce cutting temperature and cutting force, improve chip breaking ability, and reduce burr formation. When the cutting thickness will reach the minimum cutting thickness hmin, the chip will start to form. When A/ƒz > 1/2, the tracks of the two tool heads start to cut, and the chips are not continuous. Some of the best burr suppression effects were achieved under conditions of low cutting speed (Vc), feed per tooth (ƒz), and large amplitude (A). When A is 6 µm, the size and quantity of burr is the smallest. When ƒz reaches 6 µm, large continuous burrs appear at the top of the groove. The experimental results further confirm the accuracy of the simulation results and provide parameter reference.

3.
Med Sci Monit ; 28: e934816, 2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35292616

ABSTRACT

BACKGROUND Wound healing is a dynamic and complex process that is regulated by a variety of factors and pathways. This study sought to identify the mechanisms of the four-herb Chinese medicine ANBP in enhancing wound repair. MATERIAL AND METHODS By comparing the group treated with ANBP for 6 h (Z6h) with the corresponding control group (C6h), we used the new high-throughput differential acetylation proteomics method to explore the mechanism of ANBP treatment and analyse and identify new targets of ANBP for promoting wound healing. RESULTS ANBP promoted skin wound healing in mice; the wound healing process was accelerated and the wound healing time was shortened (P<0.05). The upregulated proteins were distributed mostly in the mitochondria to nuclear respiratory chain complexes and cytoplasmic vesicles. The dominant pathways for upregulated proteins were fatty acid metabolism, pyruvate metabolism, and tricarboxylic acid cycle. Pdha1 was upregulated with the most acetylation sites, while the downregulated Ncl, and Pfkm were most acetylated. CONCLUSIONS The findings from our study showed that ANBP improved cell aerobic respiration through enhanced glycolysis, pyruvic acid oxidative decarboxylation, and the Krebs cycle to produce more ATP for energy consumption, thus accelerating wound repair of skin.


Subject(s)
Cytokines/metabolism , Medicine, Chinese Traditional/methods , Mitochondria/metabolism , Proteomics/methods , Skin/injuries , Wound Healing , Wounds and Injuries/metabolism , Acetylation , Animals , Cells, Cultured , Disease Models, Animal , Male , Mice , Mice, Inbred C57BL , Mitochondria/pathology , Signal Transduction , Skin/metabolism , Skin/pathology , Up-Regulation , Wounds and Injuries/pathology
4.
Hum Vaccin Immunother ; 12(9): 2334-40, 2016 09.
Article in English | MEDLINE | ID: mdl-27159397

ABSTRACT

BACKGROUND: Although the killed whole-cell and live attenuated plague vaccine have been licensed, they are rarely used today because of toxicities, limited evidence of efficacy against plague, poor immune persistence required booster immunization every year, and limited commercial availability. This study was a randomized phase 2a clinical trial aimed to evaluating the immunogenicity and safety of a novel subunit plague vaccine. METHODS: 240 healthy adults aged 18-55 y were enrolled and randomly assigned at a ratio of 1:1 to receive 2 doses of 15 or 30 mcg vaccine at a 28-day interval between doses. Blood samples were collected at day 0, 28 and 56. Adverse events were collected during the first 28 d after each vaccination. Serious Adverse Event was observed throughout the study period. RESULTS: 239 participants received the first dose at day 0 and 238 received the second dose at day 28. Antibodies to envelope antigen faction 1 (F1) and recombinant virulence antigen (rV) were increased at day 28, and boosted significantly at day 56. For anti-F1 antibodies, geometric mean titer (GMT) and geometric mean fold increase (GMFI) were significantly higher in 30 mcg group than in the 15 mcg group(each P1< 0.05 at day 28 and each P1< 0.001 at day 56), with similar seroconversion rate of antibodies between 15 and 30 mcg group at both of the 2 time points. For anti-rV antibodies, seroconversion rate at day 28 in 30 mcg group was higher than that in 15 mcg group. However, GMT and GMFI of anti-rV antibodies were increased to approximately the same levels in the 2 groups. Similar booster immune response was also noticed in both groups at day 56. The injections were well tolerated, with mainly mild or moderate local and systemic adverse reactions (lower than grad 3). The proportion of pain at injection site was higher in 30 mcg group. None of SAEs were reported during 56 d. CONCLUSION: The plague vaccine comprised of F1 and rV antigens showed good safety and immunogenicity in adults aged 18-55 y old. The data show that the 30 mcg formulation is generally more immunogenic than the 15 mcg formulation, and represents the preferred formulation for further clinical development. It will be important to evaluate the long-term efficacy for appropriate formulations of the plague subunit vaccine.


Subject(s)
Plague Vaccine/adverse effects , Plague Vaccine/immunology , Adolescent , Adult , Antibodies, Bacterial/blood , Drug-Related Side Effects and Adverse Reactions/epidemiology , Drug-Related Side Effects and Adverse Reactions/pathology , Female , Healthy Volunteers , Humans , Male , Middle Aged , Plague Vaccine/administration & dosage , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/adverse effects , Vaccines, Subunit/immunology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...