Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
ACS Omega ; 7(32): 27851-27863, 2022 Aug 16.
Article in English | MEDLINE | ID: mdl-35990502

ABSTRACT

The effect of interphase properties on the crystallization behavior of blends of poly(lactic acid) (PLA)/acetylated starch (AS) with different degrees of substitution (DSs) was investigated. Under isothermal crystallization conditions, the rate of crystallization was higher for PLA/DS0.5 and lower for PLA/DS1.5 and PLA/DS2.5 when compared to PLA. In contrast, non-isothermal crystallization behavior indicated a slower rate of crystallization of PLA/DS0.5 and a faster rate of crystallization of PLA/DS1.5 and PLA/DS2.5 compared to PLA at the highest cooling rate (5 °C/min). The potential relationship between crystallization behavior and interphase properties and interphase thickness and formation of rigid amorphous fraction in the interphase, was investigated. The formation of a rigid amorphous fraction in PLA/DS1.5 and a thick interphase in PLA/DS2.5 prevented the formation of crystals on the dispersed phase and interrupted the crystallization under isothermal conditions. Hydrogen bonding in the PLA/DS1.5 blend and hydrophobic interactions in the PLA/DS2.5 blend may facilitate the crystallization at high cooling rates under non-isothermal conditions. Small-angle X-ray scattering analysis revealed the presence of a smaller lamellar structure in PLA/AS blends. The largest amorphous phase among blends was observed for the PLA/DS1.5 blend, which can be attributed to the hydrogen bonding in the interphase region of this blend.

2.
Carbohydr Polym ; 229: 115453, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-31826416

ABSTRACT

This study investigated the acetylation of starch to improve its processability and compatibility with poly(lactic acid). The temperature at the maximum rate of degradation increased by 3.2% for poly(lactic acid) blends containing acetylated starch degree of substitution 2.5 compared to the blend containing neat starch. A biphasic morphology with distinct dispersed phase was predicted and observed experimentally for all blends except the blend containing acetylated starch degree of substitution 3. Acetylated starch induced plasticization and nucleation for all degree of substitution. The blend containing acetylated starch degree of substitution 2.5 had higher tensile strength (26%), and toughness (29%) compared to the blend containing neat starch. The superior mechanical properties of the blend containing acetylated starch degree of substitution 2.5 are attractive for medical implant applications. The continuous microstructure and transparency characteristics of the blend containing acetylated starch degree of substitution 3 are attractive for packaging applications.

3.
Molecules ; 23(10)2018 Sep 26.
Article in English | MEDLINE | ID: mdl-30261610

ABSTRACT

The present research work aimed at hydrolytic treatment of kraft black liquor (KBL) at 200⁻300 °C for the production of low-molecular-weight depolymerized kraft lignin (DKL). Various process conditions such as reaction temperature, reaction time, initial kraft lignin (KL) substrate concentration, presence of a catalyst (NaOH), capping agent (phenol) or co-solvent (methanol) were evaluated. The research demonstrated effective depolymerization of KL in KBL at 250⁻300 °C with NaOH as a catalyst at a NaOH/lignin ratio of about 0.3 (w/w) using diluted KBL (with 9 wt. % KL). Treatment of the diluted KBL at 250 °C for 2 h with 5% addition of methanol co-solvent produced DKL with a weight-average molecular weight (Mw) of 2340 Da, at approx. 45 wt. % yield, and a solid residue at a yield of ≤1 wt. %. A longer reaction time favored the process by reducing the Mw of the DKL products. Adding a capping agent (phenol) helped reduce repolymerization/condensation reactions thereby reducing the Mw of the DKL products, enhancing DKL yield and increasing the hydroxyl group content of the lignin. For the treatment of diluted KBL (with 9 wt. % KL) at 250 °C for 2 h, with 5% addition of methanol co-solvent in the presence of NaOH/lignin ≈ 0.3 (w/w), followed by acidification to recover the DKL, the overall mass balances for C, Na and S were measured to be approx. 74%, 90% and 77%, respectively. These results represent an important step towards developing a cost-effective approach for valorization of KBL for chemicals.


Subject(s)
Alcoholic Beverages , Lignin/chemistry , Solvents/chemistry , Catalysis , Hydrolysis , Molecular Weight , Polymerization , Temperature
4.
Molecules ; 22(11)2017 Oct 28.
Article in English | MEDLINE | ID: mdl-29143782

ABSTRACT

In this study bio-based bio-phenol-formaldehyde (BPF) resoles were prepared using hydrolytically depolymerized Kraft lignin (DKL) as bio-phenol to partially substitute phenol. The effects of phenol substitution ratio, weight-average molecular weight (Mw) of DKL and formaldehyde-to-phenol (F/P) ratio were also investigated to find the optimum curing temperature for BPF resoles. The results indicated that DKL with Mw ~ 1200 g/mol provides a curing temperature of less than 180 °C for any substitution level, provided that F/P ratios are controlled. Incorporation of lignin reduced the curing temperature of the resin, however, higher Mw DKL negatively affected the curing process. For any level of lignin Mw, the curing temperature was found to increase with lower F/P ratios at lower phenol substitution levels. At 25% and 50% phenol substitution, increasing the F/P ratio allows for synthesis of resoles with lower curing temperatures. Increasing the phenol substitution from 50% to 75% allows for a broader range of lignin Mw to attain low curing temperatures.


Subject(s)
Formaldehyde/chemistry , Lignin/chemistry , Phenol/chemistry , Hydrolysis , Temperature
5.
Bioresour Technol ; 239: 151-159, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28521224

ABSTRACT

In this study, the aqueous phase obtained from catalytic/non-catalytic hydrothermal liquefaction (HTL) of Chlorella vulgaris was recycled as the reaction medium with an aim to reduce water consumption and increase bio-crude oil yield. Although both Na2CO3 and HCOOH catalysts have been proven to be effective for promoting biomass conversion, the bio-crude oil yield obtained from HTL with Na2CO3 (11.5wt%) was lower than that obtained from the non-catalytic HTL in pure water at 275°C for 50min. While, the HCOOH led to almost the same bio-crude yield from HTL (29.4wt%). Interestingly, bio-crude oil yield obtained from non-catalytic or catalytic HTL in recycled aqueous phase was much higher than that obtained from HTL in pure water. Recycling aqueous phase obtained from catalytic HTL experiments resulted in a sharp increase in the bio-crude oil yield by 32.6wt% (Na2CO3-HTL) and 16.1wt% (HCOOH-HTL), respectively.


Subject(s)
Biofuels , Chlorella vulgaris , Gas Chromatography-Mass Spectrometry , Temperature
6.
Water Res ; 113: 111-123, 2017 04 15.
Article in English | MEDLINE | ID: mdl-28208104

ABSTRACT

The present study examines the relationship between the degree of solubilization and biodegradability of wastewater sludge in anaerobic digestion as a result of low-temperature thermal pre-treatment. The main effect of thermal pre-treatment is the disintegration of cell membranes and thus solubilization of organic compounds. There is an established correlation between chemical oxygen demand (COD) solubilization and temperature of thermal pre-treatment, but results of thermal pre-treatment in terms of biodegradability are not well understood. Aiming to determine the impact of low temperature treatments on biogas production, the thermal pre-treatment process was first optimized based on an experimental design study on waste activated sludge in batch mode. The optimum temperature, reaction time and pH of the process were determined to be 80 °C, 5 h and pH 10, respectively. All three factors had a strong individual effect (p < 0.001), with a significant interaction effect for temp. pH2 (p = 0.002). Thermal pre-treatments, carried out on seven different municipal wastewater sludges at the above optimum operating conditions, produced increased COD solubilization of 18.3 ± 7.5% and VSS reduction of 27.7 ± 12.3% compared to the untreated sludges. The solubilization of proteins was significantly higher than carbohydrates. Methane produced in biochemical methane potential (BMP) tests, indicated initial higher rates (p = 0.0013) for the thermally treated samples (khyd up to 5 times higher), although the ultimate methane yields were not significantly affected by the treatment.


Subject(s)
Sewage/chemistry , Wastewater , Anaerobiosis , Biological Oxygen Demand Analysis , Methane/metabolism , Temperature
7.
Bioresour Technol ; 218: 953-61, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27450125

ABSTRACT

In this study, effects of fractionation solvents, catalysts, temperatures and residence time on yields, purity and chemical composition of the products were investigated at the solid/solvent ratio of 1:5 (g/g). It was revealed that mixture of acetic acid/formic acid/water at the ratio of 3:6:1 (v/v/v) resulted in crude cellulose and lignin products of relatively high purity. The use of HCl catalyst contributed to a high crude cellulose yield, while H2SO4 showed an adverse effect on cellulose yield. However, both of these acidic catalysts contributed to much lower hemicellulose contents in the resulted crude cellulose products compared with those obtained without a catalyst. Fractionation at 90°C for 180min in mixed solvents of acetic acid/formic acid/water (3:6:1, v/v/v) with or without catalyst produced crude cellulose with very low residual lignin contents (<4%).


Subject(s)
Cellulose/chemistry , Chemical Fractionation/methods , Lignin/chemistry , Zea mays/chemistry , Acids/chemistry , Organic Chemicals/chemistry , Solvents/chemistry
8.
Onco Targets Ther ; 9: 3501-9, 2016.
Article in English | MEDLINE | ID: mdl-27366087

ABSTRACT

Temozolomide (TMZ) is commonly used in glioma chemotherapy. However, a great clinical challenge for TMZ is chemoresistance. H19 transcripts are recognized as long noncoding RNAs, which potentially interact with chromatin-modifying complexes to regulate gene expression via epigenetic changes. Our data based on glioma patients showed that the expression of H19 was significantly upregulated in TMZ-resistant tumors compared with the TMZ-sensitive tumors. To determine the function of H19 in glioma, cell lines U87 and U251 were exposed to TMZ to establish TMZ-resistant clones U87(TMZ) and U251(TMZ). In U87(TMZ) and U251(TMZ), the expression level of H19 transcripts was increased compared to wild-type or nonresistant clones, as determined by real-time quantitative reverse transcription polymerase chain reaction. Concomitant treatment with small interfering RNA specifically targeting H19 and TMZ in resistant glioma clones resulted in decreased IC50 values for TMZ, and increased apoptotic rates than control small interfering RNA-treated cells. This was also evident by the increased PARP cleavage in resistant cells exposed to TMZ + si-H19. Furthermore, the reduced expression of H19 altered major drug resistance genes, such as MDR, MRP, and ABCG2, both at the mRNA and protein levels. Taken together, these findings suggest that H19 plays an important role in the development of TMZ resistance, and may represent a novel therapeutic target for TMZ-resistant gliomas.

9.
Bioresour Technol ; 190: 416-9, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25936442

ABSTRACT

Hydrolytic depolymerization of hydrolysis lignin (HL) in water and water-ethanol co-solvent was investigated at 250°C for 1h with 20% (w/v) HL substrate concentration with or without catalyst (H2SO4 or NaOH). The obtained depolymerized HLs (DHLs) were characterized with GPC-UV, FTIR, GC-MS, (1)H NMR and elemental analyzer. In view of the utilization of depolymerized HL (DHL) for the preparation of rigid polyurethane foams/resins un-catalyzed depolymerization of HL employing water-ethanol mixture appeared to be a viable route with high yield of DHL ∼70.5wt.% (SR yield of ∼9.8wt.%) and with Mw as low as ∼1000g/mole with suitable aliphatic (227.1mgKOH/g) and phenolic (215mgKOH/g) hydroxyl numbers. The overall % carbon recovery under the selected best route was ∼87%. Acid catalyzed depolymerization of HL in water and water-ethanol mixture lead to slightly increased Mw. Alkaline hydrolysis helped in reducing Mw in water and opposite trend was observed in water-ethanol mixture.


Subject(s)
Lignin/chemistry , Polyurethanes/chemical synthesis , Solvents/chemistry , Water/chemistry , Catalysis , Gases/chemical synthesis , Hydrolysis , Lignin/isolation & purification , Polymers/chemistry
10.
Bioresour Technol ; 171: 95-102, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25189514

ABSTRACT

In this study, formic acid (FA) was employed as an in-situ hydrogen donor for the reductive de-polymerization of kraft lignin (KL). Under the optimum operating conditions, i.e., 300 °C, 1 h, 18.6 wt.% substrate concentration, 50/50 (v/v) water-ethanol medium with FA at a FA-to-lignin mass ratio of 0.7, KL (Mw∼10,000 g/mol) was effectively de-polymerized, producing de-polymerized lignin (DL, Mw 1270 g/mol) at a yield of ∼90 wt.% and <1 wt.% yield of solid residue (SR). The MW of the DL products decreased with increasing reaction temperature, time and FA-to-lignin mass ratio. The sulfur contents of all DL products were remarkably lower than that in the original KL. It was also demonstrated that FA is a more reactive hydrogen source than external hydrogen for reductive de-polymerization of KL.


Subject(s)
Biofuels , Formates/chemistry , Lignin/chemistry , Hydrogen/chemistry , Magnetic Resonance Spectroscopy , Oxidation-Reduction , Polymerization , Temperature
11.
Bioresour Technol ; 139: 13-20, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23644065

ABSTRACT

Kraft lignin (KL) was successfully depolymerized into polyols of moderately high hydroxyl number and yield with moderately low weight-average molecular weight (Mw) via direct hydrolysis using NaOH as a catalyst, without any organic solvent/capping agent. The effects of process parameters including reaction temperature, reaction time, NaOH/lignin ratio (w/w) and substrate concentration were investigated and the polyols/depolymerized lignins (DLs) obtained were characterized with GPC-UV, FTIR-ATR, (1)H NMR, Elemental & TOC analyzer. The best operating conditions appeared to be at 250°C, 1h, and NaOH/lignin ratio ≈0.28 with 20 wt.% substrate concentration, leading to <0.5% solid residues and ∼92% yield of DL (aliphatic-hydroxyl number ≈352 mg KOH/mg and Mw≈3310 g/mole), suitable for replacement of polyols in polyurethane foam synthesis. The overall % carbon recovery under the above best conditions was ∼90%. A higher temperature favored reduced Mw of the polyols while a longer reaction time promoted dehydration/condensation reactions.


Subject(s)
Biotechnology/methods , Lignin/chemistry , Polymers/chemical synthesis , Hydrogen-Ion Concentration/drug effects , Hydrolysis/drug effects , Magnetic Resonance Spectroscopy , Polymerization/drug effects , Sodium Hydroxide/pharmacology , Spectroscopy, Fourier Transform Infrared , Temperature , Time Factors
12.
Carbohydr Res ; 346(13): 2019-23, 2011 Sep 27.
Article in English | MEDLINE | ID: mdl-21737067

ABSTRACT

Efficient conversion of glucose to 5-hydroxymethyl furfural (5-HMF), a platform chemical for fuels and materials, was achieved using CrCl(2) or CrCl(3) as the catalysts with inexpensive co-catalysts and solvents including halide salts in dimethyl sulfoxide (DMSO) and several ionic liquids. 5-HMF (54.8%) yield was achieved with the CrCl(2)/tetraethyl ammonium chloride system at mild reaction conditions (120°C and 1h). The 5-HMF formation reaction was found to be faster in ionic liquids than in the DMSO system. Effects of water in the reaction system, chromium valence and reaction temperature on the conversion of glucose into 5-HMF were discussed in this work.


Subject(s)
Furaldehyde/analogs & derivatives , Glucose/chemistry , Solvents/chemistry , Catalysis , Chlorides/chemistry , Chromium Compounds/chemistry , Furaldehyde/chemistry , Ionic Liquids/chemistry , Molecular Structure
13.
Bioresour Technol ; 101(23): 9308-13, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20667719

ABSTRACT

Alkaline lignin of a very high molecular weight was successfully degraded into oligomers in a hot-compressed water-ethanol medium with NaOH as the catalyst and phenol as the capping agent at 220-300 degrees C. Under the optimal reaction conditions, i.e., 260 degrees C, 1 h, with the lignin/phenol ratio of 1:1 (w/w), almost complete degradation was achieved, producing <1% solid residue and negligible gas products. The obtained degraded lignin had a number-average molecular weight M(n) and weight-average molecular weight M(w) of 450 and 1000 g/mol respectively, significantly lower than the M(n) and M(w) of 10,000 and 60,000 g/mol of the original lignin. A higher temperature and a longer reaction time favoured phenol combination, but increased the formation of solid residue due to the condensation reactions of the degradation intermediates/products. The degraded lignin products were soluble in organic solvents (such as THF), and were characterized by HPLC/GPC, IR and NMR. A possible mechanism for lignin hydrolytic degradation was also proposed in this study.


Subject(s)
Alkalies/chemistry , Ethanol/chemistry , Hot Temperature , Lignin/chemistry , Water/chemistry , Chromatography, Gel , Gas Chromatography-Mass Spectrometry , Hydrolysis , Phenol/chemistry , Solvents/chemistry , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...