Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Huan Jing Ke Xue ; 44(3): 1748-1757, 2023 Mar 08.
Article in Chinese | MEDLINE | ID: mdl-36922235

ABSTRACT

The riparian zone supports important ecological functions and acts as an ecotone connecting terrestrial and aquatic areas. Soil microbes under the revegetation of woody species are crucial to the biogeochemical cycle of nutrients. Here, soil samples were collected to examine the soil microbes during different emergence phases in 2019 (May:T1, July:T2, and September:T3) in the riparian zone of the Three Gorges Reservoir, China. The variations in the bacterial community were evaluated using high-throughput sequencing. The results showed that:during the emergence phases, soil properties such as pH value (pH), ammonium nitrogen (NH4+-N), and nitrate-nitrogen (NO3--N) and soil enzymes changed significantly(P<0.05), and soil bacterial α diversity also changed with time. Except for the Chao1 index, the richness of rhizosphere soil bacteria showed T1>T2>T3, whereas the α diversity of non-rhizosphere soil bacteria showed T3>T1>T2. The redundancy analysis (RDA) test implied that soil urease, NH4+-N, pH, and NO3--N were the key factors structuring the microbial community. Proteobacteria and Acidobacteria were the two dominant components among the 60 phyla that were detected in the soil. Based on phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt2) prediction, metabolism was the basic function of soil bacterial communities of Taxodium distichum; in the secondary functional layer, the metabolic pathways related to carbon, nitrogen, and phosphorus mainly included amino acid metabolism, carbohydrate metabolism, lipid compound metabolism, and energy metabolism, and the relative abundance of each metabolic function had a certain time difference in different periods. These findings could help us better understand how soil microbes change after restoring vegetation in the Three Gorges Reservoir area.


Subject(s)
Soil , Taxodium , Soil/chemistry , Soil Microbiology , Phylogeny , Bacteria/genetics , Nitrogen
2.
Protoplasma ; 260(1): 307-325, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35689107

ABSTRACT

Aerenchyma formation plays an important role in the survival of Potamogeton perfoliatus in submerged environment. To understand the regulatory role of reactive oxygen species (ROS) and caspase 3-like protein signaling molecules in aerenchyma formation, we investigated the effects of exogenous NADPH oxidase inhibitor (diphenyleneiodonium chloride, DPI), catalase inhibitor (3-amino-1,2,4-triazole, AT), and caspase-3-like protein inhibitor (AC-DEVD-CHO, DEVD) on morphological and physiological characteristics and aerenchyma formation in P. perfoliatus. The results showed that after DPI treatment, caspase-3-like protein activity decreased, ROS-related enzyme activities increased, and H2O2 content decreased, thereby inhibiting aerenchyma formation. When the concentration of DPI was approximately 1 µmol/L, the inhibitory effect was the most obvious. On the contrary, after the AT treatment, caspase-3-like protein activity increased, ROS-related enzyme activities decreased, and the H2O2 content increased, ultimately promoting aerenchyma formation, and the promotion was the most obvious under treatment with approximately 500 µmol/L AT. After DEVD treatment, the inhibition of vegetative growth caused by DPI or AT treatment was alleviated, significantly reducing caspase-3-like activity and inhibiting aerenchyma development. The results of this study show that ROS has a positive regulatory effect on aerenchyma formation, and caspase-3-like protein is activated to promote ROS-mediated aerenchyma formation. This experiment provides a new theoretical basis for further exploration of the signal transduction effects of ROS and caspase-3-like protein in plant cells and their roles in plant development.


Subject(s)
Potamogetonaceae , Reactive Oxygen Species/metabolism , Caspase 3/metabolism , Potamogetonaceae/metabolism , Hydrogen Peroxide/metabolism , Plant Roots/metabolism
3.
BMC Plant Biol ; 22(1): 266, 2022 May 30.
Article in English | MEDLINE | ID: mdl-35637438

ABSTRACT

BACKGROUND: The bermudagrass (Cynodon dactylon (L.) Pers) roots responded differently in terms of morphological and anatomical characteristics under diverse submergence conditions, and they developed aerenchyma under non-flooding condition. In order to understand these mechanisms, bermudagrass cuttings were used as experimental material to examine their biomass, root morphology, and aerenchyma formation under three different water treatments, including control (CK), shallow submergence (SS), and deep submergence (DS). RESULTS: The total root length, root volume, root surface area, and biomass of bermudagrass were largest in CK, followed by SS and DS. However, the average root diameter was greater in each of DS and SS than that in CK. Root aerenchyma formation was observed in CK, and submergence boosted the aerenchyma formation and the root cavity rate. Furthermore, our study found that the process of aerenchyma formation began with the increase of cell volume and cell separation to form a narrow space, and these cells gradually died to form matured aerenchyma cavity, which belongs to schizo-lysigenous aerenchyma. Meanwhile, typical biomarkers of programmed cell death were also observed. CONCLUSION: Overall, these results suggested that submergence inhibited the accumulation of biomass and root growth, but facilitated aerenchyma formation by increasing root diameter.


Subject(s)
Cynodon , Plant Roots , Biomass , Plant Roots/metabolism
4.
Biology (Basel) ; 10(11)2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34827134

ABSTRACT

Litter decomposition is an important soil nutrient source that promotes vegetation in deteriorated riparian zones worldwide. The periodic submergence and sediment burial effects on two prominent annual herbaceous plants (Echinochloa crusgali and Bidens tripartite) are little known in mega-reservoir settings. Our study focuses on the mass and carbon loss and nutrient release from E. crusgali and B. tripartitle litter and changes in soil properties, which are important for riparian zone rehabilitation in the Three Gorges Dam Reservoir, China. This study adopted the litter bag method to explore the nutrient change characteristics and changes in soil properties at different sediment burial depths under flooding scenarios. Three burial depths (0 cm, 5 cm, and 10 cm) were used for these two plants, and the experiment lasted for 180 days. The results revealed that the litter decay rate was high at first in the incubation experiment, and the nutrient loss rate followed the pattern of K > P > N > C. The relationship between % C remaining and % mass remaining was nearly 1:1, and the total amount of P exhibited a leaching-enrichment-release state in the decomposition process. Nutrients were changed significantly in the soil and overlying water at the first decomposition stage. Still, the total soil nutrient change was insignificant at the end, except for the 10 cm burial of B. tripartitle. Moreover, oxidation-reduction potential was the main factor in the litter decomposition process at different burial depths. This study indicated that sediment deposition reduced litter mass loss, slowed down the release of N and P, and retained more C, but promoted the release of K. Conclusively, in litter decomposition under waterlogging, the total soil nutrient content changed little. However, litter does more to the soil than that. Therefore, it is necessary to study the residual soil litter's continuous output after the water level declines for restoration purposes.

5.
Plants (Basel) ; 10(10)2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34685849

ABSTRACT

Ecological stoichiometric studies can be useful for managing the deteriorated riparian zones of mega-reservoirs in which nutrients significantly impact the balanced vegetation cover. The present study aims to explore the effects of periodic submergence on the stoichiometric ecological characteristics of carbon (C), nitrogen (N), and phosphorus (P), as well as the growth conditions of two leading conifer species (Taxodium distichum and Taxodium ascendens) in the hydro-fluctuation zone of the Three Gorges Reservoir (TGR) region, China. The stoichiometrical contents of C, N, and P in fine roots, leaves, and branches, and the growth conditions of T. distichum and T. ascendens were measured in July 2019. The results showed that periodic submergence affected the stoichiometric characteristics and growth conditions of these two woody species, and the impact was restrained, but both grew well. The effects of inundation on the C, N, and P ecological stoichiometric characteristics differed in different parts of trees. In general, the C contents showed the following pattern: leaves > branches > fine roots. The N and P content showed the following pattern: leaves > fine roots > branches, while the C/N and C/P ratios showed an opposite trend to that of N and P. The N and P content in all parts of T. distichum (with means of 17.18 and 1.70 g/kg for leaves, 4.80 and 0.57 g/kg for branches, and 6.88 and 1.10 g/kg for fine roots, respectively) and T. ascendens (with means of 14.56 and 1.87 g/kg for leaves, 5.03 and 0.63 g/kg for branches, and 8.17 and 1.66 g/kg for fine roots, respectively) were higher than the national average level (with means of 14.14 and 1.11 g/kg for leaves, 3.04 and 0.31 g/kg for branches, and 4.85 and 0.47 g/kg for fine roots, respectively). Except for N and P contents in the leaves of T. distichum, there was a significant correlation between N and P elements in other parts (p < 0.05). Nevertheless, the N/P ratio (10.15, 8.52, 6.44, and 7.93, 8.12, 5.20 in leaves, branches, and fine roots of T. distichum and T. ascendens, respectively) was lower than the critical ratio of 14. The growth conditions of T. distichum and T. ascendens were significantly negatively correlated with their leaf C contents and significantly positively correlated with their fine root N and P contents. This study showed that T. distichum and T. ascendens could maintain their normal growth needs by properly allocating nutrients between different organs to adapt to the long periodic submergence in the hydro-fluctuation zone of the TGR region.

6.
Sci Total Environ ; 801: 149827, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34467924

ABSTRACT

The construction of dams has caused riparian habitat degradation and ecosystem service loss globally. It is critical to assess the response of riparian plant communities to inundation gradients for their conservation. Recent evidence suggests that plant community assemblages are governed by flooding stress, soil nutrient availability, climate (environmental filtering) and dispersal, speciation, local extinction (dispersal filtering), but it remains unclear which dominates the riparian ecosystem regulated by a dam. Thus, this article aims to elucidate the relative importance of environmental and dispersal filtering to variations in plant communities to understand community assembly mechanisms in riparian ecosystems. Here we used plant community data related to four elevations in the riparian zone of the Three Gorges Dam Reservoir in China to show that species richness and diversity, community height, and the cover of total, annual, and exotic plant categories decreased, while the cover of perennial and native plant groups increased under higher flooding stress. Community composition varied substantially with elevation, and species composition tended to converge with increased inundation, characterized by flood-tolerant species. The community composition underwent stronger environmental filtering at low elevations and stronger dispersal filtering at high elevations, with stronger environmental filtering across riparian ecosystems. Therefore, we conclude that dam inundation drives community assemblages of riparian plants by the combined effects of environmental and dispersal filtering. Still, their relative contribution varies between elevations, and environmental filtering is more important in shaping community assembly. This study is the first to confirm that plant community assembly in the dam-regulated riparian area is determined by both niche-based and stochastic processes. Thus, we highlighted the importance of considering inundation intensity, propagule sources, and river connectivity when implementing restoration projects.


Subject(s)
Ecosystem , Plants , Floods , Rivers , Soil
7.
Int J Mol Sci ; 22(15)2021 Jul 23.
Article in English | MEDLINE | ID: mdl-34360668

ABSTRACT

Submergence impedes photosynthesis and respiration but facilitates aerenchyma formation in bermudagrass. Still, the regulatory genes underlying these physiological responses are unclear in the literature. To identify differentially expressed genes (DEGs) related to these physiological mechanisms, we studied the expression of DEGs in aboveground and underground tissues of bermudagrass after a 7 d treatment under control (CK), shallow submergence (SS), and deep submergence (DS). Results show that compared with CK, 12276 and 12559 DEGs were identified under SS and DS, respectively. Among them, the DEGs closely related to the metabolism of chlorophyll biosynthesis, light-harvesting, protein complex, and carbon fixation were down-regulated in SS and DS. Meanwhile, a large number of DEGs involved in starch and sucrose hydrolase activities, glycolysis/gluconeogenesis, tricarboxylic acid (TCA) cycle, and oxidative phosphorylation were down-regulated in aboveground tissues of bermudagrass in SS and DS. Whereas in underground tissues of bermudagrass these DEGs were all up-regulated under SS, only beta-fructofuranosidase and α-amylase related genes were up-regulated under DS. In addition, we found that DEGs associated with ethylene signaling, Ca2+-ROS signaling, and cell wall modification were also up-regulated during aerenchyma formation in underground tissues of bermudagrass under SS and DS. These results provide the basis for further exploration of the regulatory and functional genes related to the adaptability of bermudagrass to submergence.


Subject(s)
Adaptation, Physiological , Cynodon/metabolism , Gene Expression Regulation, Plant , Photosynthesis , Plant Proteins/metabolism , Stress, Physiological , Transcriptome , Cell Respiration , Cynodon/genetics , Cynodon/growth & development , Plant Proteins/genetics , Water/physiology
8.
Biology (Basel) ; 10(8)2021 Aug 23.
Article in English | MEDLINE | ID: mdl-34440051

ABSTRACT

Plant and microbiome interactions are necessary for plant nutrient acquisition. However, relatively little is known about the responses of roots, bulk, and rhizosphere soil microbial communities in different artificial vegetation types (woody and herbaceous) in riparian areas of massive dams and reservoirs. Therefore, this study aims to assess such responses at elevations of 165-170 m a.s.l. in the riparian zones of the Three Gorges Dam Reservoir, China. The samples were collected containing the rhizosphere soil, bulk soil, and roots of herbaceous and woody vegetation at different emergence stages in 2018. Then, all the samples were analyzed to quantify the soil properties, bacterial community characteristics, and their interaction in the early and late emergence phases. In different periods, the weight of dominant soil bacteria, including Proteobacteria, Acidobacteria, Actinobacteria, Chloroflexi, and Cyanobacteria, was higher, and their composition was different in the rhizosphere, bulk soil, and endophytes. Moreover, the soil co-occurrence networks indicated that the weight of soil physical properties was higher than chemical properties in the early emergence stage. In contrast, the weight of chemical properties was relatively higher in the late emergence stage. Furthermore, the richness and diversity of the bacterial community were mainly affected by soil organic matter. This study suggests that these herbaceous and woody vegetation are suitable for planting in reservoir areas affected by hydrology and human disturbance in light of soil nutrients and soil microbial communities, respectively. Additionally, these results provide valuable information to inoculate the soil with key microbiota members by applying fertilizers, potentially improving plant health and soil production.

9.
Environ Sci Pollut Res Int ; 28(31): 42609-42621, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33818726

ABSTRACT

Many rivers across the globe are regulated by dams, resulting in a strong alteration of the plant community composition of the drawdown zone. But, how these changes happen along the drawdown zone is less understood. In this study, a multivariate analysis was used to explore plant composition and similarity along the drawdown zone of the Three Gorges Dam Reservoir (TGDR), China. The dominant plant species, species richness, indicator species, and growth form were compared among the upstream, midstream, and downstream of the TGDR. Moreover, variation partitioning was used to determine the relative importance of environmental factors and spatial factors. Results showed that only a few species contributed the most to the community composition of the study area, and there was an extreme similarity in the plant community composition across the three different river segments. Furthermore, the results of the linear regression model demonstrated a steady declining trend in species richness along the drawdown zone, with the lowest species richness in the downstream segment. In addition, variation partitioning revealed 11% and 8% of the species composition change under environmental and spatial factors, respectively. Our results suggested that the dam impoundment led to the convergence of species composition along the drawdown zone of the TGDR, and environmental filtering and dispersal limitation played an imperative role in shaping species composition. The study highlighted the importance of restoration activities in overcoming the barriers of seed dispersal and seedling establishment in the degraded drawdown zone ecosystem of the TGDR.


Subject(s)
Ecosystem , Floods , China , Plants , Rivers
10.
Sci Rep ; 10(1): 17382, 2020 10 15.
Article in English | MEDLINE | ID: mdl-33060624

ABSTRACT

The leaves of riparian plants are the main source of energy and nutrients in riparian ecosystems. In order to evaluate the nutrient release of reforested trees in a riparian zone, a field litterbag experiment involving three foliar types (the leaves of either coniferous and broadleaf trees as single-leaf treatment, or a mixture of coniferous and broadleaf leaves as a heterogenous-leaf treatment) and different submergence depths [no submergence (CK), shallow submergence (SS), and deep submergence (DS)] was conducted in situ in the Three Gorges Reservoir (TGR) for one year. The results showed that, when compared to the single-leaf treatment, the heterogenous-leaf treatment exhibited greater mass loss at both SS and DS, in contrast to a greater nitrogen release rate only at DS and a greater phosphorous release rate only at SS. Overall, submergence facilitated decomposition and nutrient release, although the decomposition rate was higher in SS than in DS. The results suggested that the decomposition and nutrient release of the three foliar types may increase the potential pollution risk to the TGR water environment. Thus, we propose that the leaves of the reforested riparian stands be harvested prior to submergence to preserve the water quality of the TGR.


Subject(s)
Ecosystem , Nutrients/metabolism , Plant Leaves/metabolism , Trees/metabolism , China , Species Specificity , Water
11.
Ecotoxicol Environ Saf ; 191: 110230, 2020 Mar 15.
Article in English | MEDLINE | ID: mdl-31982682

ABSTRACT

The potential for the phytoremediation of halophytes has been widely recognized. However, the effects of salt on Cd accumulation characteristics in different halophytic species, which may also be related to their salt tolerance, are still unclear. This study investigated the effects of salinity on Cd accumulation and distribution in two distinct halophytes, Suaeda glauca (euhalophyte) and Limonium aureum (recretohalophyte). Seedlings of the two species were treated with 0, 3, and 6 mg kg-1 soil Cd in combination with or without 0.3% NaCl in a pot experiment. The amount of Cd within the rhizosphere and plant tissues, plant biomass, and the subcellular distribution and chemical forms of Cd were examined. Results showed that the addition of NaCl significantly increased Cd bioavailability at high Cd levels due to the rhizosphere acidification effect. Meanwhile, salinity differently impacted plant biomass allocation, and enhanced Cd uptake and translocation in both studied halophytes. Excess Cd was excreted from the leaf surface, possibly by salt glands of L. aureum, with the salinity facilitating this process. Majority of the Cd was found within the cell walls and vacuolar compartments of two species. However, S. glauca plants had higher proportions of inactive Cd (extracted by 2% HAc and 0.6 M HCl) and lower proportions of active Cd (extracted by 80% ethanol and water), as opposed to L. aureum, which would better inform S. glauca's higher Cd accumulation. Based on these results, S. glauca seems more applicable for phytomanagement of Cd-contaminated saline soils due to its higher capacity for Cd enrichment and tolerance amplified by NaCl.


Subject(s)
Cadmium/pharmacokinetics , Chenopodiaceae/metabolism , Plumbaginaceae/metabolism , Salt-Tolerant Plants/metabolism , Soil Pollutants/pharmacokinetics , Biodegradation, Environmental , Biomass , Plant Leaves/metabolism , Rhizosphere , Salinity
SELECTION OF CITATIONS
SEARCH DETAIL
...