Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.804
Filter
1.
Org Lett ; 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39004828

ABSTRACT

We report herein a deoxygenative radical multicomponent reaction involving alcohols, aryl alkenes, and cyanopyridine under photoredox conditions. This method is photoredox-neutral, suitable for late-stage modification, and compatible with a wide array of alcohols as alkyl radical sources, including primary, secondary, and tertiary alcohols. This reaction comprises a radical relay mechanism encompassing the Giese addition of aryl alkenes by alkyl radicals, followed by the decyanative pyridination of benzyl radicals.

2.
Zool Res ; 45(4): 833-844, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39004861

ABSTRACT

Porcine reproductive and respiratory syndrome (PRRS) is a globally prevalent contagious disease caused by the positive-strand RNA PRRS virus (PRRSV), resulting in substantial economic losses in the swine industry. Modifying the CD163 SRCR5 domain, either through deletion or substitution, can eff1ectively confer resistance to PRRSV infection in pigs. However, large fragment modifications in pigs inevitably raise concerns about potential adverse effects on growth performance. Reducing the impact of genetic modifications on normal physiological functions is a promising direction for developing PRRSV-resistant pigs. In the current study, we identified a specific functional amino acid in CD163 that influences PRRSV proliferation. Viral infection experiments conducted on Marc145 and PK-15 CD163 cells illustrated that the mE535G or corresponding pE529G mutations markedly inhibited highly pathogenic PRRSV (HP-PRRSV) proliferation by preventing viral binding and entry. Furthermore, individual viral challenge tests revealed that pigs with the E529G mutation had viral loads two orders of magnitude lower than wild-type (WT) pigs, confirming effective resistance to HP-PRRSV. Examination of the physiological indicators and scavenger function of CD163 verified no significant differences between the WT and E529G pigs. These findings suggest that E529G pigs can be used for breeding PRRSV-resistant pigs, providing novel insights into controlling future PRRSV outbreaks.


Subject(s)
Antigens, CD , Antigens, Differentiation, Myelomonocytic , Point Mutation , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Receptors, Cell Surface , Animals , Swine , Porcine Reproductive and Respiratory Syndrome/genetics , Porcine Reproductive and Respiratory Syndrome/virology , Porcine respiratory and reproductive syndrome virus/physiology , Porcine respiratory and reproductive syndrome virus/genetics , Antigens, Differentiation, Myelomonocytic/genetics , Antigens, Differentiation, Myelomonocytic/metabolism , Antigens, CD/genetics , Antigens, CD/metabolism , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Animals, Genetically Modified/genetics , Cell Line
3.
Small ; : e2402402, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949051

ABSTRACT

Doping transition metal oxide spinels with metal ions represents a significant strategy for optimizing the electronic structure of electrocatalysts. Herein, a bimetallic Fe and Ru doping strategy to fine-tune the crystal structure of CoV2O4 spinel for highly enhanced oxygen evolution reaction (OER) is presented performance. The incorporation of Fe and Ru is observed at octahedral sites within the CoV2O4 structure, effectively modulating the electronic configuration of Co. Density functional theory calculations have confirmed that Fe acts as a novel reactive site, replacing V. Additionally, the synergistic effect of Fe, Co, and Ru effectively optimizes the Gibbs free energy of the intermediate species, reduces the reaction energy barrier, and accelerates the kinetics toward OER. As expected, the best-performing CoVFe0.5Ru0.5O4 displays a low overpotential of 240 mV (@10 mA cm-2) and a remarkably low Tafel slope of 38.9 mV dec-1, surpassing that of commercial RuO2. Moreover, it demonstrates outstanding long-term durability lasting for 72 h. This study provides valuable insights for the design of highly active polymetallic spinel electrocatalysts for energy conversion applications.

4.
Reproduction ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949488

ABSTRACT

Studies on the mechanisms behind cumulus expansion and cumulus cell (CC) apoptosis are essential for understanding the mechanisms for oocyte maturation. Genes expressed in CCs might be used as markers for competent oocytes and/or embryos. In this study, both in vitro (IVT) and in vivo (IVO) mouse oocyte models with significant difference in cumulus expansion and CC apoptosis were used to identify and validate new genes regulating cumulus expansion and CC apoptosis of mouse oocytes. We first performed mRNA sequencing and bioinformatic analysis using the IVT oocyte model to identify candidate genes. We then analyzed functions of the candidate genes by RNAi or gene overexpression to select the candidate cumulus expansion and CC apoptosis-regulating genes. Finally, we validated the cumulus expansion and CC apoptosis-regulating genes using the IVO oocyte model. The results showed that while Spp1, Sdc1, Ldlr, Ezr and Mmp2 promoted, Bmp2, Angpt2, Edn1, Itgb8, Cxcl10 and Agt inhibited cumulus expansion. Furthermore, Spp1, Sdc1 and Ldlr inhibited CC apoptosis. In conclusion, by using both IVT and IVO oocyte models, we have identified and validated a new group of cumulus expansion and/or apoptosis-regulating genes, which may be used for selection of quality oocytes/embryos and for elucidating the molecular mechanisms behind oocyte maturation.

6.
Ann Hematol ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990294

ABSTRACT

The MEF2D rearrangement is a recurrent chromosomal abnormality detected in approximately 2.4-5.3% of patients with acute B-cell lymphoblastic leukemia (B-ALL). Currently, MEF2D-rearranged B-ALL is not classified as an independent subtype in the WHO classification. Consequently, the clinical significance of MEF2D rearrangement in B-ALL remains largely unexplored. In this study, we retrospectively screened 260 B-ALL patients with RNA sequencing data collected between November 2018 and December 2022. Among these, 10 patients were identified with MEF2D rearrangements (4 with MEF2D::HNRNPUL1, 3 with MEF2D::BCL9, 1 with MEF2D::ARID1B, 1 with MEF2D::DAZAP1 and 1 with MEF2D::HNRNPM). Notably, HNRNPM and ARID1B are reported as MEF2D fusion partners for the first time. The patient with the MEF2D::HNRNPM fusion was resistant to chemotherapy and chimeric antigen receptor T-cell therapy and relapsed early after allogenic stem cell transplantation. The patient with MEF2D::ARID1B experienced early extramedullary relapse after diagnosis. All 10 patients achieved complete remission after induction chemotherapy. However, 9/10 (90%) of whom experienced relapse. Three of the 9 patients relapsed with aberrant expression of myeloid antigens. The median overall survival of these patients was only 11 months. This small cohort showed a high incidence of early relapse and short survival in patients with MEF2D rearrangements.

8.
Nat Commun ; 15(1): 4813, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844461

ABSTRACT

Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) poses a major threat to the global swine industry, yet effective prevention and control measures remain elusive. This study unveils Nitazoxanide (NTZ) as a potent inhibitor of PRRSV both in vitro and in vivo. Through High-Throughput Screening techniques, 16 potential anti-PRRSV compounds are identified from a library comprising FDA-approved and pharmacopeial drugs. We show that NTZ displays strong efficacy in reducing PRRSV proliferation and transmission in a swine model, alleviating viremia and lung damage. Additionally, Tizoxanide (TIZ), the primary metabolite of NTZ, has been identified as a facilitator of NMRAL1 dimerization. This finding potentially sheds light on the underlying mechanism contributing to TIZ's role in augmenting the sensitivity of the IFN-ß pathway. These results indicate the promising potential of NTZ as a repurposed therapeutic agent for Porcine Reproductive and Respiratory Syndrome (PRRS). Additionally, they provide valuable insights into the antiviral mechanisms underlying NTZ's effectiveness.


Subject(s)
Antiviral Agents , High-Throughput Screening Assays , Nitro Compounds , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Thiazoles , Animals , Porcine respiratory and reproductive syndrome virus/drug effects , Nitro Compounds/pharmacology , Swine , Antiviral Agents/pharmacology , High-Throughput Screening Assays/methods , Porcine Reproductive and Respiratory Syndrome/drug therapy , Porcine Reproductive and Respiratory Syndrome/virology , Thiazoles/pharmacology , Virus Replication/drug effects , Cell Line , Viremia/drug therapy , Viremia/virology
9.
Front Nutr ; 11: 1356207, 2024.
Article in English | MEDLINE | ID: mdl-38863588

ABSTRACT

Background: Currently, the association between the consumption of polyunsaturated fatty acids (PUFAs) and the susceptibility to autoimmune rheumatic diseases (ARDs) remains conflict and lacks substantial evidence in various clinical studies. To address this issue, we employed Mendelian randomization (MR) to establish causal links between six types of PUFAs and their connection to the risk of ARDs. Methods: We retrieved summary-level data on six types of PUFAs, and five different types of ARDs from publicly accessible GWAS statistics. Causal relationships were determined using a two-sample MR analysis, with the IVW approach serving as the primary analysis method. To ensure the reliability of our research findings, we used four complementary approaches and conducted multivariable MR analysis (MVMR). Additionally, we investigated reverse causality through a reverse MR analysis. Results: Our results indicate that a heightened genetic predisposition for elevated levels of EPA (ORIVW: 0.924, 95% CI: 0.666-1.283, P IVW = 0.025) was linked to a decreased susceptibility to psoriatic arthritis (PsA). Importantly, the genetically predicted higher levels of EPA remain significantly associated with an reduced risk of PsA, even after adjusting for multiple testing using the FDR method (P IVW-FDR-corrected = 0.033) and multivariable MR analysis (P MV-IVW < 0.05), indicating that EPA may be considered as the risk-protecting PUFAs for PsA. Additionally, high levels of LA showed a positive causal relationship with a higher risk of PsA (ORIVW: 1.248, 95% CI: 1.013-1.538, P IVW = 0.037). It is interesting to note, however, that the effects of these associations were weakened in our MVMR analyses, which incorporated adjustment for lipid profiles (P MV-IVW > 0.05) and multiple testing using the FDR method (P IVW-FDR-corrected = 0.062). Moreover, effects of total omega-3 PUFAs, DHA, EPA, and LA on PsA, were massively driven by SNP effects in the FADS gene region. Furthermore, no causal association was identified between the concentrations of other circulating PUFAs and the risk of other ARDs. Further analysis revealed no significant horizontal pleiotropy and heterogeneity or reverse causality. Conclusion: Our comprehensive MR analysis indicated that EPA is a key omega-3 PUFA that may protect against PsA but not other ARDs. The FADS2 gene appears to play a central role in mediating the effects of omega-3 PUFAs on PsA risk. These findings suggest that EPA supplementation may be a promising strategy for preventing PsA onset. Further well-powered epidemiological studies and clinical trials are warranted to explore the potential mechanisms underlying the protective effects of EPA in PsA.

10.
Drug Des Devel Ther ; 18: 1811-1819, 2024.
Article in English | MEDLINE | ID: mdl-38828024

ABSTRACT

Purpose: Mechanistic studies showed that morphine may impair the antiplatelet effect of P2Y12 inhibitors. However, Several clinical studies with cardiovascular events as an outcome are contradictory, and the broader impact of this drug interaction on additional organ systems remains uncertain. With multisource data, this study sought to determine the effects of morphine interaction with P2Y12 inhibitors on major adverse outcomes comprehensively, and identify the warning indicators. Patients and Methods: Interaction signals were sought in 187,919 safety reports from the FDA Adverse Event Reporting System (FAERS) database, utilizing reporting odds ratios (repOR). In a cohort of 5240 acute coronary syndrome patients, the analyses were validated, and the biological effects of warning indicators were further studied with Mendelian randomization and mediation analysis. Results: Potential risk of renal system adverse events in patients cotreated with morphine is significantly higher in FAERS (repOR 4.83, 95% CI 4.42-5.28, false discovery rate adjusted-P =3.55*10-209). The analysis of in-house patient cohorts validated these results with an increased risk of acute kidney injury (adjusted OR: 1.65; 95% CI: 1.20 to 2.26), and we also found a risk of myocardial infarction in patients treated with morphine (adjusted OR: 1.55; 95% CI: 1.14 to 2.11). The Morphine group exhibited diminished Plateletcrit (PCT) levels post-surgery and lower PCT levels were associated with an increased risk of AKI. Conclusion: The administration of morphine in patients treated with P2Y12 receptor inhibitors should be carefully evaluated. PCT may serve as a potential warning indicator for morphine-related renal injury.


Subject(s)
Acute Coronary Syndrome , Morphine , Purinergic P2Y Receptor Antagonists , Humans , Morphine/adverse effects , Morphine/administration & dosage , Purinergic P2Y Receptor Antagonists/adverse effects , Purinergic P2Y Receptor Antagonists/administration & dosage , Acute Coronary Syndrome/drug therapy , Male , Female , Middle Aged , Aged , Platelet Aggregation Inhibitors/adverse effects , Platelet Aggregation Inhibitors/administration & dosage , Analgesics, Opioid/adverse effects , Analgesics, Opioid/administration & dosage
11.
Front Cell Infect Microbiol ; 14: 1397847, 2024.
Article in English | MEDLINE | ID: mdl-38881735

ABSTRACT

Nocardiosis demonstrates a temporal categorization that includes acute, subacute, and chronic stages alongside distinct typical localizations such as pulmonary, cutaneous, and disseminated forms. Disseminated nocardiosis, commonly caused by Nocardia asteroides, N. brasiliensis, and N. farcinica, continues to result in substantial morbidity and mortality. Herein, we report a life-threatening disseminated nocardiosis caused by Nocardia otitidiscaviarum in a patient with minimal change disease. This study emphasizes the difficulty in the diagnosis and treatment of unknown infections in clinical settings and highlights the important role played by laboratories in solving infectious diseases caused by rare pathogens.


Subject(s)
Anti-Bacterial Agents , Nocardia Infections , Nocardia , Nocardia Infections/diagnosis , Nocardia Infections/drug therapy , Nocardia Infections/microbiology , Humans , Nocardia/isolation & purification , Anti-Bacterial Agents/therapeutic use , Male , Treatment Outcome , Middle Aged
12.
Toxicol In Vitro ; 99: 105876, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38876226

ABSTRACT

Fangchinoline (FA) is an alkaloid derived from the traditional Chinese medicine Fangji. Numerous studies have shown that FA has a toxic effect on various cancer cells, but little is known about its toxic effects on germ cells, especially oocytes. In this study, we investigated the effects of FA on mouse oocyte maturation and its potential mechanisms. Our results showed that FA did not affect meiosis resumption but inhibited the first polar body extrusion. This inhibition is not due to abnormalities at the organelle level, such as chromosomes and mitochondrial, which was proved by detection of DNA damage and reactive oxygen species. Further studies revealed that FA arrested the oocyte at the metaphase I stage, and this arrest was not caused by abnormal kinetochore-microtubule attachment or spindle assembly checkpoint activation. Instead, FA inhibits the activity of anaphase-promoting complexes (APC/C), as evidenced by the inhibition of CCNB1 degeneration. The decreased activity of APC/C may be due to a reduction in CDC25B activity as indicated by the high phosphorylation level of CDC25B (Ser323). This may further enhance Maturation-Promoting Factor (MPF) activity, which plays a critical role in meiosis. In conclusion, our study suggests that the metaphase I arrest caused by FA may be due to abnormalities in MPF and APC/C activity.

13.
Eur J Pharmacol ; 978: 176749, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38897444

ABSTRACT

A substantial proportion of diabetic patients suffer a debilitating and persistent pain state, known as peripheral painful neuropathy that necessitates improved therapy or antidote. Purpurin, a natural anthraquinone compound from Rubia tinctorum L., has been reported to possess antidepressant activity in preclinical studies. As antidepressants have been typically used as standard agents against persistent neuropathic pain, this study aimed to probe the effect of purpurin on neuropathic pain associated with streptozotocin-induced type 1 diabetes in male C57BL6J mice. The Hargreaves test and the von Frey test were used to assess the pain-like behaviors, shown as heat hyperalgesia and mechanical allodynia respectively. Chronic treatment of diabetic mice with purpurin not only ameliorated the established symptoms of heat hyperalgesia and mechanical allodynia, but also arrested the development of these pain states given preemptively at low doses. Although purpurin treatment hardly impacted on metabolic disturbance in diabetic mice, it ameliorated exacerbated oxidative stress in pain-associated tissues, improved mitochondrial bioenergetics in dorsal root ganglion neurons and restored nerve conduction velocity in sciatic nerves. Notably, the analgesic actions of purpurin were modified by pharmacologically manipulating redox status and mitochondrial bioenergetics. These findings unveil the analgesic activity of purpurin, an effect that is causally associated with its bioenergetics-enhancing and antioxidant effects, in mice with type 1 diabetes.

14.
Exp Neurol ; 379: 114870, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38897539

ABSTRACT

BACKGROUND AND PURPOSE: The pathophysiological features of acute ischemic stroke (AIS) often involve dysfunction of the blood-brain barrier (BBB), characterized by the degradation of tight junction proteins (Tjs) leading to increased permeability. This dysfunction can exacerbate cerebral injury and contribute to severe complications. The permeability of the BBB fluctuates during different stages of AIS and is influenced by various factors. Developing effective therapies to restore BBB function remains a significant challenge in AIS treatment. High levels of vascular endothelial growth factor (VEGF) in the early stages of AIS have been shown to worsen BBB breakdown and stroke progression. Our study aimed to investigate the protective effects of the VEGF receptor inhibitor Axitinib on BBB dysfunction and cerebral ischemia/reperfusion-induced injury. METHODS: BEnd3 cell exposed to oxygen-glucose deprivation (OGD) model was constructed to estimate pharmacological activity of Axitinib (400 ng/ml) on anti-apoptosis and pathological barrier function recovery. In vivo, rats were subjected to a 1 h transient middle cerebral artery occlusion and 23 h reperfusion (tMCAO/R) to investigate the permeability of BBB and cerebral tissue damage. Axitinib was administered through the tail vein at the beginning of reperfusion. BBB integrity was assessed by Evans blue leakage and the expression levels of Tjs claudin-5 and occludin. RESULTS: Our research revealed that co-incubation with Axitinib enhanced the cell viability of OGD-insulted bEnd3 cells, decreased LDH leakage rate, and suppressed the expression of apoptosis-related proteins cytochrome C and Bax. Axitinib also mitigated the damage to Tjs and facilitated the restoration of transepithelial electrical resistance in OGD-insulted bEnd.3 cells. In vivo, Axitinib administration reduced intracerebral Evans blue leakage and up-regulated the expression of Tjs in the penumbra brain tissue in tMCAO/R rats. Notably, 10 mg/kg Axitinib exerted a significant anti-ischemic effect by decreasing cerebral infarct volume and brain edema volume, improving neurological function, and reducing pro-inflammatory cytokines IL-6 and TNF-α in the brain. CONCLUSIONS: Our study highlights Axitinib as a potent protectant of blood-brain barrier function, capable of promoting pathological blood-brain barrier recovery through VEGF inhibition and increased expression of tight junction proteins in AIS. This suggests that VEGF antagonism within the first 24 h post-stroke could be a novel therapeutic approach to enhance blood-brain barrier function and mitigate ischemia-reperfusion injury.

15.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(3): 780-788, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-38926967

ABSTRACT

OBJECTIVE: To investigate the role of serum adenosine deaminase (ADA) combined with globulin (GLB), creatinine (CREA), ß2-microglobulin (ß2-MG) and hemoglobin (HGB) in the initial screening of multiple myeloma (MM), in order to reduce missed diagnosis and misdiagnosis of MM. METHODS: A retrospective analysis was performed on 62 newly diagnosed multiple myeloma (NDMM) patients who were admitted to the Department of Hematology of the First Affiliated Hospital of Chengdu Medical College from April 2018 to December 2021, and 33 patients with benign hematologic diseases and 30 healthy subjects were selected as the control group. The expression of ADA in pan-cancer was analyzed using TCGA and GTEx databases. The general data and laboratory indicators of the subjects were collected, and the differences of ADA activity and other laboratory indicators in each group were compared. The relationship between serum ADA activity and clinical data of NDMM patients was analyzed. The changes of ADA activity before and after chemotherapy in NDMM patients and the differences of ADA activity in NDMM patients with different DS and ISS stages were compared. Multivariate logistic regression was used to analyze the risk factors of NDMM. The receiver operating characteristic(ROC) curve was used to evaluate the diagnostic efficacy of ADA and other laboratory indicators in MM. Bioinformatics method was used to analyze the co-expression networks and enrichment pathways of ADA. RESULTS: ADA level was significantly upregulated in tissues of 14 types of cancer in TCGA database, and ADA was highly expressed in 11 types of cancer in TCGA combined with GTEx databases. The serum levels of ADA, GLB, uric acid (UA), cystatin C (CysC) and ß2-MG in the NDMM group were significantly higher than those in benign hematologic disease group and healthy control group ( P < 0.05), while the levels of ALB and the value of albumin to globulin ratio (A∶G) in the NDMM group were significantly lower than those in the other two groups ( P < 0.001). There were significant differences in DS stage (P =0.036), ISS stage (P =0.019) and the levels of CREA (P =0.036), UA (P =0.034), ß2-MG (P =0.019) in NDMM patients with different ADA activity levels. After primary chemotherapy, ADA activity and ß2-MG concentration were decreased in NDMM patients ( P < 0.01). The comparison results of patients in different stages showed that ADA activity of patients in DS stage I+II was significantly lower than that of patients in DS stage III (P <0.05), and ADA activity of patiens in ISS stage I+II was significantly lower than that of patients in ISS stage III ( P < 0.01). Multivariate logistic regression analysis showed that increased GLB, increased ADA activity, increased CREA, increased ß2-MG and decreased HGB were independent risk factors for NDMM. The area under the curve (AUC) of ADA in the diagnosis of MM was 0.847, and the AUC of ADA combined with GLB, CREA, ß2-MG and HGB in the diagnosis of MM was 0.940. The results of co-expression network and enrichment pathway analysis showed that ADA bounded to 20 proteins and it was significantly associated with the metabolic pathways of purine, pyrimidine, nicotinate and nicotinamide. CONCLUSION: The detection of ADA activity in serum is of positive significance for the auxiliary diagnosis, therapeutic evaluation and monitoring the progress of NDMM patients. ADA combined with GLB, CREA, ß2-MG and HGB can improve the detection rate of MM, and reduce missed diagnosis and misdiagnosis to a certain extent.


Subject(s)
Adenosine Deaminase , Creatinine , Multiple Myeloma , beta 2-Microglobulin , Humans , Adenosine Deaminase/blood , Multiple Myeloma/blood , Multiple Myeloma/diagnosis , beta 2-Microglobulin/blood , Retrospective Studies , Creatinine/blood , Hemoglobins/analysis , Male , Female , Clinical Relevance
16.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(3): 875-882, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-38926983

ABSTRACT

OBJECTIVE: This study was aimed to provide ideas for identifying the antibodies to high-frequency antigens by analyzing a female case of high-frequency antigen antibody (anti-Ku) using serological and sequencing method. METHODS: The methods for identification of blood group, erythrocyte antigen, screening and identification of antibody were used to detect the blood type and antibody in the proband. The proband's serum and reagent screening cells treated with Sulfhydryl reagent were applied to judge the type and characteristics of this antibodies when reacted with the regaent screening cells or proband's serum respectively. Gene sequencing was used to determine the genotype of the proband's blood group. RESULTS: The proband's red blood cells were determined as O type RhD positive, whose serum showed strong positive reaction to antibody-screening cells and antibody identification cells with the same intensity in saline and IAT medium, however, the self-cells showed negative effect. The Direct Antihuman Globulin of proband's red blood cells also showed weak positive reaction, and the other blood types were CcEe, Jk(a+b-), P1-, Le(a-b -), Lu (a-b +), K-, k-, Kp(a-b-). Serum of the proband treated with 2-ME still react with three groups of screening cells in IAT medium. The reaction intensity of proband's serum was also unchanged with the cells modified with papain and bromelain, but showed negative effect when the cells were treated with sulfhydryl agents including DTT and 2-ME. Gene sequencing revealed that the KEL genotype of the patient was KEL*02N.24 . This patient had a rare K0 phenotype. CONCLUSION: The rare Kell-null blood group (also known as K0) were identified by serological and molecular tests in the proband who produced both IgG and IgM type of antibody to high-frequency antigen (anti-Ku). These two methods are of great significance in the identification of this rare blood group as well as the antibody to high frequency antigen.


Subject(s)
Erythrocytes , Humans , Female , Erythrocytes/immunology , Blood Group Antigens/immunology , Blood Grouping and Crossmatching , Genotype , Ku Autoantigen/immunology , Antibodies
17.
Adv Mater ; : e2405086, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38940367

ABSTRACT

In situ polymerized solid-state electrolytes have attracted much attention due to high Li-ion conductivity, conformal interface contact, and low interface resistance, but are plagued by lithium dendrite, interface degradation, and inferior thermal stability, which thereby leads to limited lifespan and severe safety hazards for high-energy lithium metal batteries (LMBs). Herein, an in situ polymerized electrolyte is proposed by copolymerization of 1,3-dioxolane with 1,3,5-tri glycidyl isocyanurate (TGIC) as a cross-linking agent, which realizes a synergy of battery thermal safety and interface compatibility with Li anode. Functional TGIC enhances the electrolyte polymeric level. The unique carbon-formation mechanism facilitates flame retardancy and eliminates the battery fire risk. In the meantime, TGIC-derived inorganic-rich interphase inhibits interface side reactions and promotes uniform Li plating. Intrinsically safe LMBs with nonflammability and outstanding electrochemical performances under extreme temperatures (130 °C) are achieved. This functional polymer design shows a promising prospect for the development of safe LMBs.

18.
J Reprod Dev ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38910127

ABSTRACT

Understanding how stress hormones induce apoptosis in oviductal epithelial cells (OECs) and mural granulosa cells (MGCs) can reveal the mechanisms by which female stress impairs embryonic development and oocyte competence. A recent study showed that tissue plasminogen activator (tPA) ameliorates corticosterone-induced apoptosis in MGCs and OECs by acting on its receptors low-density lipoprotein receptor-related protein 1 (LRP1) and Annexin A2 (ANXA2), respectively. However, whether tPA is involved in corticotropin-releasing hormone (CRH)-induced apoptosis and whether it uses the same or different receptors to inhibit apoptosis induced by different hormones in the same cell type remains unknown. This study showed that CRH triggered apoptosis in both OECs and MGCs and significantly downregulated tPA expression. Moreover, tPA inhibits CRH-induced apoptosis by acting on ANXA2 in both OECs and MGCs. While ANXA2 inhibits apoptosis via phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling, LRP1 reduces apoptosis via mitogen-activated protein kinase (MAPK) signaling. Thus, tPA used the same receptor to inhibit CRH-induced apoptosis in both OECs and MGCs, however used different receptors to inhibit corticosterone-induced apoptosis in MGCs and OECs. These data helps understand the mechanism by which female stress impairs embryo/oocyte competence and proapoptotic factors trigger apoptosis in different cell types.

19.
Cells ; 13(9)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38727294

ABSTRACT

Information on long-term effects of postovulatory oocyte aging (POA) on offspring is limited. Whether POA affects offspring by causing oxidative stress (OS) and mitochondrial damage is unknown. Here, in vivo-aged (IVA) mouse oocytes were collected 9 h after ovulation, while in vitro-aged (ITA) oocytes were obtained by culturing freshly ovulated oocytes for 9 h in media with low, moderate, or high antioxidant potential. Oocytes were fertilized in vitro and blastocysts transferred to produce F1 offspring. F1 mice were mated with naturally bred mice to generate F2 offspring. Both IVA and the ITA groups in low antioxidant medium showed significantly increased anxiety-like behavior and impaired spatial and fear learning/memory and hippocampal expression of anxiolytic and learning/memory-beneficial genes in both male and female F1 offspring. Furthermore, the aging in both groups increased OS and impaired mitochondrial function in oocytes, blastocysts, and hippocampus of F1 offspring; however, it did not affect the behavior of F2 offspring. It is concluded that POA caused OS and damaged mitochondria in aged oocytes, leading to defects in anxiety-like behavior and learning/memory of F1 offspring. Thus, POA is a crucial factor that causes psychological problems in offspring, and antioxidant measures may be taken to ameliorate the detrimental effects of POA on offspring.


Subject(s)
Behavior, Animal , Mitochondria , Oocytes , Oxidative Stress , Animals , Oocytes/metabolism , Mitochondria/metabolism , Female , Mice , Male , Ovulation , Anxiety/metabolism , Anxiety/pathology , Antioxidants/metabolism , Hippocampus/metabolism , Hippocampus/pathology , Blastocyst/metabolism , Cellular Senescence , Memory
20.
Gene ; 920: 148528, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38703871

ABSTRACT

BACKGROUND: The complex relationship between atrial fibrillation (AF) and type 2 diabetes mellitus (T2DM) suggests a potential role for epicardial adipose tissue (EAT) that requires further investigation. This study employs bioinformatics and experimental approaches to clarify EAT's role in linking T2DM and AF, aiming to unravel the biological mechanisms involved. METHOD: Bioinformatics analysis initially identified common differentially expressed genes (DEGs) in EAT from T2DM and AF datasets. Pathway enrichment and network analyses were then performed to determine the biological significance and network connections of these DEGs. Hub genes were identified through six CytoHubba algorithms and subsequently validated biologically, with further in-depth analyses confirming their roles and interactions. Experimentally, db/db mice were utilized to establish a T2DM model. AF induction was executed via programmed transesophageal electrical stimulation and burst pacing, focusing on comparing the incidence and duration of AF. Frozen sections and Hematoxylin and Eosin (H&E) staining illuminated the structures of the heart and EAT. Moreover, quantitative PCR (qPCR) measured the expression of hub genes. RESULTS: The study identified 106 DEGs in EAT from T2DM and AF datasets, underscoring significant pathways in energy metabolism and immune regulation. Three hub genes, CEBPZ, PAK1IP1, and BCCIP, emerged as pivotal in this context. In db/db mice, a marked predisposition towards AF induction and extended duration was observed, with HE staining verifying the presence of EAT. Additionally, qPCR validated significant changes in hub genes expression in db/db mice EAT. In-depth analysis identified 299 miRNAs and 33 TFs as potential regulators, notably GRHL1 and MYC. GeneMANIA analysis highlighted the hub genes' critical roles in stress responses and leukocyte differentiation, while immune profile correlations highlighted their impact on mast cells and neutrophils, emphasizing the genes' significant influence on immune regulation within the context of T2DM and AF. CONCLUSION: This investigation reveals the molecular links between T2DM and AF with a focus on EAT. Targeting these pathways, especially EAT-related ones, may enable personalized treatments and improved outcomes.


Subject(s)
Atrial Fibrillation , Diabetes Mellitus, Type 2 , Epicardial Adipose Tissue , Gene Expression Profiling , Pericardium , Animals , Humans , Male , Mice , Atrial Fibrillation/genetics , Computational Biology/methods , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Epicardial Adipose Tissue/metabolism , Gene Expression Profiling/methods , Gene Regulatory Networks , Mice, Inbred C57BL , Pericardium/metabolism , Pericardium/pathology , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...