Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 66(4): 2506-2523, 2023 02 23.
Article in English | MEDLINE | ID: mdl-36757090

ABSTRACT

Conjugation of synthetic triantennary N-acetyl-d-galactosamine (GalNAc) to small interfering RNA (siRNA) mediates binding to the asialoglycoprotein receptor (ASGPR) on the surface of hepatocytes, facilitating liver-specific uptake and siRNA-mediated gene silencing. The natural ß-glycosidic bond of the GalNAc ligand is rapidly cleaved by glycosidases in vivo. Novel GalNAc ligands with S-, and C-glycosides with both α- and ß-anomeric linkages, N-glycosides with ß-anomeric linkage, and the O-glycoside with α-anomeric linkage were synthesized and conjugated to siRNA either on-column during siRNA synthesis or through a high-throughput, post-synthetic method. Unlike natural GalNAc, modified ligands were resistant to glycosidase activity. The siRNAs conjugated to newly designed ligands had similar affinities for ASGPR and similar silencing activity in mice as the parent GalNAc-siRNA conjugate. These data suggest that other factors, such as protein-nucleic acid interactions and loading of the antisense strand into the RNA-induced silencing complex (RISC), are more critical to the duration of action than the stereochemistry and stability of the anomeric linkage between the GalNAc moiety of the ligand conjugated to the sense strand of the siRNA.


Subject(s)
Asialoglycoprotein Receptor , Galactosamine , RNA, Small Interfering , RNA-Induced Silencing Complex , Animals , Mice , Acetylgalactosamine/chemistry , Asialoglycoprotein Receptor/metabolism , Glycoside Hydrolases/metabolism , Glycosides/metabolism , Hepatocytes/metabolism , Ligands , RNA, Small Interfering/metabolism , RNA-Induced Silencing Complex/metabolism
2.
Molecules ; 27(12)2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35745067

ABSTRACT

The development of oligonucleotide conjugates for in vivo targeting is one of the most exciting areas for oligonucleotide therapeutics. A major breakthrough in this field was the development of multifunctional GalNAc-oligonucleotides with high affinity to asialoglycoprotein receptors (ASGPR) that directed therapeutic oligonucleotides to hepatocytes. In the present study, we explore the use of G-rich sequences functionalized with one unit of GalNAc at the 3'-end for the formation of tetrameric GalNAc nanostructures upon formation of a parallel G-quadruplex. These compounds are expected to facilitate the synthetic protocols by providing the multifunctionality needed for the binding to ASGPR. To this end, several G-rich oligonucleotides carrying a TGGGGGGT sequence at the 3'-end functionalized with one molecule of N-acetylgalactosamine (GalNAc) were synthesized together with appropriate control sequences. The formation of a self-assembled parallel G-quadruplex was confirmed through various biophysical techniques such as circular dichroism, nuclear magnetic resonance, polyacrylamide electrophoresis and denaturation curves. Binding experiments to ASGPR show that the size and the relative position of the therapeutic cargo are critical for the binding of these nanostructures. The biological properties of the resulting parallel G-quadruplex were evaluated demonstrating the absence of the toxicity in cell lines. The internalization preferences of GalNAc-quadruplexes to hepatic cells were also demonstrated as well as the enhancement of the luciferase inhibition using the luciferase assay in HepG2 cell lines versus HeLa cells. All together, we demonstrate that tetramerization of G-rich oligonucleotide is a novel and simple route to obtain the beneficial effects of multivalent N-acetylgalactosamine functionalization.


Subject(s)
Acetylgalactosamine , G-Quadruplexes , Acetylgalactosamine/chemistry , Asialoglycoprotein Receptor/metabolism , HeLa Cells , Hepatocytes , Humans , Oligonucleotides/metabolism
4.
Mol Ther Methods Clin Dev ; 13: 484-492, 2019 Jun 14.
Article in English | MEDLINE | ID: mdl-31193726

ABSTRACT

Complement-mediated damage to the neuromuscular junction (NMJ) is a key mechanism of pathology in myasthenia gravis (MG), and therapeutics inhibiting complement have shown evidence of efficacy in the treatment of MG. In this study, we describe the development of a subcutaneously administered N-acetylgalactosamine (GalNAc)-conjugated small interfering RNA (siRNA) targeting the C5 component of complement that silences C5 expression in the liver (ALN-CC5). Treatment of wild-type rodents with ALN-CC5 resulted in robust and durable suppression of liver C5 expression. Dose-dependent serum C5 suppression was observed in non-human primates, with a lowering of serum C5 of up to 97.5% and the concomitant inhibition of serum complement activity. C5 silencing was efficacious in ameliorating disease symptoms in two standard rat models of MG, demonstrating the key role of circulating C5 in pathology at the NMJ. Improvement in disease activity scores and NMJ pathology was observed at intermediate levels of complement activity inhibition, suggesting that complete ablation of complement activity may not be required for efficacy in MG. The pre-clinical studies of ALN-CC5 and efficacy of C5 silencing in rat models of MG support further clinical development of ALN-CC5 as a potential therapeutic for the treatment of MG and other complement-mediated disorders.

5.
Mol Ther ; 26(1): 105-114, 2018 01 03.
Article in English | MEDLINE | ID: mdl-28988716

ABSTRACT

The hepatocyte-specific asialoglycoprotein receptor (ASGPR) is an ideal candidate for targeted drug delivery to the liver due to its high capacity for substrate clearance from circulation together with its well-conserved expression and function across species. The development of GalNAc-siRNA conjugates, in which a synthetic triantennary N-acetylgalactosamine-based ligand is conjugated to chemically modified siRNA, has enabled efficient, ASGPR-mediated delivery to hepatocytes. To investigate the potential impact of variations in receptor expression on the efficiency of GalNAc-siRNA conjugate delivery, we evaluated the pharmacokinetics and pharmacodynamics of GalNAc-siRNA conjugates in multiple pre-clinical models with reduced receptor expression. Despite greater than 50% reduction in ASGPR levels, GalNAc conjugate activity was retained, suggesting that the remaining receptor capacity was sufficient to mediate efficient uptake of potent GalNAc-siRNAs at pharmacologically relevant dose levels. Collectively, our data support a broad application of the GalNAc-siRNA technology for hepatic targeting, including disease states where ASGPR expression may be reduced.


Subject(s)
Acetylgalactosamine , Asialoglycoprotein Receptor/genetics , Gene Expression Regulation , RNA Interference , RNA, Small Interfering/genetics , Acetylgalactosamine/chemistry , Animals , Asialoglycoprotein Receptor/chemistry , Asialoglycoprotein Receptor/metabolism , Disease Models, Animal , Drug Carriers , Drug Delivery Systems , Drug Evaluation, Preclinical , Female , Gene Silencing , Hepatocytes/metabolism , Humans , Liver Cirrhosis/genetics , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Mice , Mice, Knockout , Protein Subunits/genetics , Protein Subunits/metabolism , RNA, Small Interfering/chemistry
6.
ACS Chem Biol ; 10(5): 1181-7, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25730476

ABSTRACT

Asialoglycoprotein receptor (ASGPR) mediated delivery of triantennary N-acetylgalactosamine (GalNAc) conjugated short interfering RNAs (siRNAs) to hepatocytes is a promising paradigm for RNAi therapeutics. Robust and durable gene silencing upon subcutaneous administration at therapeutically acceptable dose levels resulted in the advancement of GalNAc-conjugated oligonucleotide-based drugs into preclinical and clinical developments. To systematically evaluate the effect of display and positioning of the GalNAc moiety within the siRNA duplex on ASGPR binding and RNAi activity, nucleotides carrying monovalent GalNAc were designed. Evaluation of clustered and dispersed incorporation of GalNAc units to the sense (S) strand indicated that sugar proximity is critical for ASGPR recognition, and location of the clustered ligand impacts the intrinsic potency of the siRNA. An array of nucleosidic GalNAc monomers resembling a trivalent ligand at or near the 3' end of the S strand retained in vitro and in vivo siRNA activity, similar to the parent conjugate design. This work demonstrates the utility of simple, nucleotide-based, cost-effective siRNA-GalNAc conjugation strategies.


Subject(s)
Acetylgalactosamine/metabolism , Gene Silencing , Hepatocytes/metabolism , Nucleosides/metabolism , RNA, Small Interfering/genetics , Animals , Mice , Mice, Inbred C57BL , RNA, Small Interfering/metabolism
7.
Chembiochem ; 16(6): 903-8, 2015 Apr 13.
Article in English | MEDLINE | ID: mdl-25786782

ABSTRACT

We recently demonstrated that siRNAs conjugated to triantennary N-acetylgalactosamine (GalNAc) induce robust RNAi-mediated gene silencing in the liver, owing to uptake mediated by the asialoglycoprotein receptor (ASGPR). Novel monovalent GalNAc units, based on a non-nucleosidic linker, were developed to yield simplified trivalent GalNAc-conjugated oligonucleotides under solid-phase synthesis conditions. Synthesis of oligonucleotide conjugates using monovalent GalNAc building blocks required fewer synthetic steps compared to the previously optimized triantennary GalNAc construct. The redesigned trivalent GalNAc ligand maintained optimal valency, spatial orientation, and distance between the sugar moieties for proper recognition by ASGPR. siRNA conjugates were synthesized by sequential covalent attachment of the trivalent GalNAc to the 3'-end of the sense strand and resulted in a conjugate with in vitro and in vivo potency similar to that of the parent trivalent GalNAc conjugate design.


Subject(s)
Acetylgalactosamine/chemistry , Drug Carriers/chemistry , Gene Silencing , Hepatocytes/metabolism , RNA, Small Interfering/chemistry , RNA, Small Interfering/genetics , Animals , Mice , Prealbumin/deficiency , Prealbumin/genetics
8.
Mol Ther Nucleic Acids ; 1: e4, 2012 Jan 24.
Article in English | MEDLINE | ID: mdl-23344621

ABSTRACT

Leukocytes are central regulators of inflammation and the target cells of therapies for key diseases, including autoimmune, cardiovascular, and malignant disorders. Efficient in vivo delivery of small interfering RNA (siRNA) to immune cells could thus enable novel treatment strategies with broad applicability. In this report, we develop systemic delivery methods of siRNA encapsulated in lipid nanoparticles (LNP) for durable and potent in vivo RNA interference (RNAi)-mediated silencing in myeloid cells. This work provides the first demonstration of siRNA-mediated silencing in myeloid cell types of nonhuman primates (NHPs) and establishes the feasibility of targeting multiple gene targets in rodent myeloid cells. The therapeutic potential of these formulations was demonstrated using siRNA targeting tumor necrosis factor-α (TNFα) which induced substantial attenuation of disease progression comparable to a potent antibody treatment in a mouse model of rheumatoid arthritis (RA). In summary, we demonstrate a broadly applicable and therapeutically relevant platform for silencing disease genes in immune cells.

9.
Cytotechnology ; 64(2): 187-95, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22105762

ABSTRACT

Primary mouse hepatocytes are an important tool in the biomedical research field for the assessment of hepatocyte function. Several methods for hepatocyte isolation have been published; however, many of these methods require extensive handling and can therefore compromise the viability and function of the isolated cells. Since one advantage of utilizing freshly isolated cells is to maintain an environment in which the cells are more comparable to their in vivo state, it is important to have robust methods that produce cells with high viability, good purity and that function in a similar manner to that in their in vivo state. Here we describe a modified two-step method for the rapid isolation and characterization of mouse primary hepatocytes that results in high yields of viable cells. The asialoglycoprotein receptor (ASGPR), which is one of the most abundant cell surface receptors on hepatocytes, was used to monitor the function of the isolated hepatocytes by demonstrating specific binding of its ligand using a newly developed flow cytometry based ligand-receptor binding assay. Also, an in vitro screening method for siRNA drug candidates was successfully developed utilizing freshly isolated hepatocytes with minimum culture time.

SELECTION OF CITATIONS
SEARCH DETAIL
...