Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 270: 128658, 2021 May.
Article in English | MEDLINE | ID: mdl-33757274

ABSTRACT

Microplastics are an emerging hazard in the marine environment, and considered to eventually sink into sediments. An investigation into the long-term variation of microplastic accumulation in sediment cores is essential for understanding the historical trend of this contamination and its response to human activities. In this study, the multidecadal changes of microplastic abundances in two sediment cores from the inner shelf of the East China Sea (ECS) were revealed by two methods, i.e., a visual enumeration method based on scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS) and a quantitative method based on microplastic-derived carbon (MPC) abundances. The features of microplastics were determined via SEM-EDS and micro-Fourier transform infrared spectroscopy (µ-FTIR). The results reveal a multidecadal increasing trend of microplastic accumulation in the coastal sediments of the ECS since the 1960s, which may be jointly governed by the release of plastic wastes and oceanographic dynamics. Meanwhile, the breakpoint of the exponential growth of microplastics in the ECS occurs in 2000 AD, which well matches the rapid increasing of plastic production and consumption in China. Further, based on the MPC contents in sediments, the influence of microplastics on the quantitative evaluation of carbon storage in the ECS has been examined for the first time, revealing an insignificant (<2% before 2014 AD) but potentially-increasing (6.8% by 2025 AD) contribution of microplastics to carbon burial. Our results may provide the important data for evaluating and mitigating the impact of microplastics on the marine environment.


Subject(s)
Microplastics , Water Pollutants, Chemical , China , Environmental Monitoring , Geologic Sediments , Humans , Plastics , Water Pollutants, Chemical/analysis
2.
Sci Total Environ ; 760: 144316, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33341640

ABSTRACT

Microplastic pollution in marine environments is of particular concern on its risk to the ecosystem. To assess and manage microplastic contaminants, their quantitative detection in environmental samples is a high priority. However, uncertainties of current methods still exist when estimating their abundances, particularly with fine-grained (<1 mm) microplastics. This work reports a novel thermoanalytical method for quantifying microplastics by measuring the contents of microplastic-derived carbon (MPC) in samples under the premise of nearly eliminating the limit of their particle appearances. After validating the method via samples with the spiked microplastics, we have conducted a case study on sediment core H43 that spanned 1925-2009 CE from the Yellow Sea for further illustrating the high reliability and practicability of this method for quantifying microplastics in natural samples. Our results have demonstrated that the proposed method may be a promising technique to determine the mass-related concentrations of the total microplastics in marine sediments for evaluating their pollution status and quantitative contribution to marine carbon storage.

3.
Biomolecules ; 10(1)2020 01 03.
Article in English | MEDLINE | ID: mdl-31947787

ABSTRACT

The bacterial diseases of tilapia caused by Streptococcus agalactiae have resulted in the high mortality and huge economic loss in the tilapia industry. Matrix metalloproteinase-9 (MMP-9) may play an important role in fighting infection. However, the role of MMP-9 in Nile tilapia against S. agalactiae is still unclear. In this work, MMP-9 cDNA of Nile tilapia (NtMMP-9) has been cloned and characterized. NtMMP-9 has 2043 bp and encodes a putative protein of 680 amino acids. NtMMP-9 contains the conserved domains interacting with decorin and inhibitors via binding forces compared to those in other teleosts. Quantitative real-time-polymerase chain reaction (qPCR) analysis reveals that NtMMP-9 distinctly upregulated following S. agalactiae infection in a tissue- and time-dependent response pattern, and the tissues, including liver, spleen, and intestines, are the major organs against a S. agalactiae infection. Besides, the proteolytic activity of NtMMP-9 is also confirmed by heterologous expression and zymography, which proves the active function of NtMMP-9 interacting with other factors. The findings indicate that NtMMP-9 was involved in immune responses against the bacterial challenge at the transcriptional level. Further work will focus on the molecular mechanisms of NtMMP-9 to respond and modulate the signaling pathways in Nile tilapia against S. agalactiae invasion and the development of NtMMP-9-related predictive biomarkers or vaccines for preventing bacterial infection in the tilapia industry.


Subject(s)
Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , Tilapia/genetics , Amino Acid Sequence/genetics , Animals , Base Composition/genetics , Base Sequence/genetics , Gene Expression/genetics , Gene Expression Regulation/genetics , Immunity, Innate/genetics , Phylogeny , Signal Transduction/genetics , Streptococcus agalactiae/immunology , Streptococcus agalactiae/metabolism , Streptococcus agalactiae/pathogenicity , Tilapia/immunology , Tilapia/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...