Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 44(42): 18624-31, 2015 Nov 14.
Article in English | MEDLINE | ID: mdl-26448326

ABSTRACT

Copper ions are one of the major associated metal ions present in the precursors of the synthesis of Li[NiCoMn]1/3O2 from the recovery of spent Li-ion batteries by wet chemical processes. To evaluate the feasibility of reusing Cu(2+) as a favourable dopant in Li[NiCoMn]1/3O2 instead of as usual removing it as an undesirable impurity, the effect of Cu-doping on the electrochemical behaviour of Li[NiCoMn]1/3O2 is investigated in this work. Li[NiCo1-xCuxMn]1/3O2 (x = 0, 0.02, 0.04, 0.06 and 0.08) is synthesized through two steps, roasting the precursors obtained from carbonate co-precipitation, and their structures and electrochemical performances are systemically investigated. The results indicate that substitution of Co with Cu was successfully achieved without any detectable second phases. The initial discharge capacity of Li[NiCo1-xCuxMn]1/3O2 gradually dropped with an increase of x but the rate property and capacity retention were remarkably enhanced. In particular, the capacity retention of the Li[NiCo0.94Cu0.06Mn]1/3O2 sample reached 95.87% within 50 cycles at a current density of 160 mA g(-1). CV and EIS revealed that such improvements are ascribed to a higher Li(+) diffusion coefficient and lower charge-transfer resistance derived from Cu(2+) doping. The results suggest that Cu can be used as a beneficial dopant to partially substitute Co in synthesizing Li[NiCoMn]1/3O2 from spent LIBs instead of having to remove it as an impurity.

SELECTION OF CITATIONS
SEARCH DETAIL
...