Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mass Spectrom Rev ; 42(1): 95-130, 2023 01.
Article in English | MEDLINE | ID: mdl-34128567

ABSTRACT

Ambient mass spectrometry (AMS) has grown as a group of advanced analytical techniques that allow for the direct sampling and ionization of the analytes in different statuses from their native environment without or with minimum sample pretreatments. As a significant category of AMS, plasma-based AMS has gained a lot of attention due to its features that allow rapid, real-time, high-throughput, in vivo, and in situ analysis in various fields, including bioanalysis, pharmaceuticals, forensics, food safety, and mass spectrometry imaging. Tens of new methods have been developed since the introduction of the first plasma-based AMS technique direct analysis in real-time. This review first provides a comprehensive overview of the established plasma-based AMS techniques from their ion source configurations, mechanisms, and developments. Then, the progress of the representative applications in various scientific fields in the past 4 years (January 2017 to January 2021) has been summarized. Finally, we discuss the current challenges and propose the future directions of plasma-based AMS from our perspective.


Subject(s)
Spectrometry, Mass, Electrospray Ionization , Spectrometry, Mass, Electrospray Ionization/methods , Pharmaceutical Preparations
2.
Chemosphere ; 281: 130710, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34000654

ABSTRACT

The understandings of environmental activities and regional inventory of ship stack PAHs are very limited in Shanghai due, in part, to the lack of source-segregated analysis. To address this, measured PAHs in organic film on ship surfaces were employed to reconstruct concentrations in various compartments through a fugacity model to investigate the level, transport, fate and annual emission of ship stack PAHs in Shanghai. The results revealed that ship stack PAHs results in 11.2-181 ng L-1 and 71.0-1710 ng g-1 in water and sediment of Shanghai, respectively. After being released into air, ship stack PAHs mainly concentrated in organic films and sediments while sunk in water and sediment. Crucial mass transfer pathways include deposition of airborne and sediment PAHs. The mass loss of ship stack PAHs was primarily through air advection, followed by degradation in sediment. The ship emissions (53.7 tons annually) accounted for approximate one tenth of the regional total in Shanghai (in 2017). Additionally, shipping was estimated to release 127 tons of PAHs annually into the Shanghai section of Yangtze River. Our results suggest our fugacity-based approach can be used to estimate the regional emissions and inventory of ship stack PAHs in the surrounding environment.


Subject(s)
Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , China , Environmental Monitoring , Geologic Sediments , Polycyclic Aromatic Hydrocarbons/analysis , Rivers , Ships , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...