Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Mol Biol Rep ; 51(1): 639, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727924

ABSTRACT

BACKGROUND: Peucedani Radix, also known as "Qian-hu" is a traditional Chinese medicine derived from Peucedanum praeruptorum Dunn. It is widely utilized for treating wind-heat colds and coughs accompanied by excessive phlegm. However, due to morphological similarities, limited resources, and heightened market demand, numerous substitutes and adulterants of Peucedani Radix have emerged within the herbal medicine market. Moreover, Peucedani Radix is typically dried and sliced for sale, rendering traditional identification methods challenging. MATERIALS AND METHODS: We initially examined and compared 104 commercial "Qian-hu" samples from various Chinese medicinal markets and 44 species representing genuine, adulterants or substitutes, utilizing the mini barcode ITS2 region to elucidate the botanical origins of the commercial "Qian-hu". The nucleotide signature specific to Peucedani Radix was subsequently developed by analyzing the polymorphic sites within the aligned ITS2 sequences. RESULTS: The results demonstrated a success rate of 100% and 93.3% for DNA extraction and PCR amplification, respectively. Forty-five samples were authentic "Qian-hu", while the remaining samples were all adulterants, originating from nine distinct species. Peucedani Radix, its substitutes, and adulterants were successfully identified based on the neighbor-joining tree. The 24-bp nucleotide signature (5'-ATTGTCGTACGAATCCTCGTCGTC-3') revealed distinct differences between Peucedani Radix and its common substitutes and adulterants. The newly designed specific primers (PR-F/PR-R) can amplify the nucleotide signature region from commercial samples and processed materials with severe DNA degradation. CONCLUSIONS: We advocate for the utilization of ITS2 and nucleotide signature for the rapid and precise identification of herbal medicines and their adulterants to regulate the Chinese herbal medicine industry.


Subject(s)
DNA Barcoding, Taxonomic , DNA, Plant , DNA, Plant/genetics , DNA Barcoding, Taxonomic/methods , Drugs, Chinese Herbal/standards , Apiaceae/genetics , Apiaceae/classification , Medicine, Chinese Traditional/standards , DNA, Ribosomal Spacer/genetics , Drug Contamination , Plants, Medicinal/genetics , Phylogeny , Sequence Analysis, DNA/methods , Polymerase Chain Reaction/methods , Nucleotides/genetics , Nucleotides/analysis
2.
Plant Divers ; 46(2): 206-218, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38807902

ABSTRACT

The East Asia (or Physospermopsis) clade was recognized in previous molecular phylogenetic investigations into the higher-level relationships of Apiaceae subfamily Apioideae. The composition of this clade, the phylogenetic relationships among its constituent taxa, and the placement of species previously determined to be problematic have yet to be resolved. Herein, nrDNA ITS sequences were obtained for 150 accessions of Apioideae, representing species whose distributions are in East Asia or genera having one or more species included within the East Asia clade. These data, along with published ITS sequences from other Apioideae (for 3678 accessions altogether), were subjected to maximum likelihood and Bayesian inference analyses. The results show that the East Asia clade contains representatives of 11 currently recognized genera: Hansenia, Hymenolaena, Keraymonia, Sinolimprichtia, Acronema, Hymenidium, Physospermopsis, Pimpinella, Sinocarum, Tongoloa, and Trachydium. However, the latter seven genera have members falling outside of the East Asia clade, including the generic types of all except Tongoloa. Within the clade, the species comprising these seven genera are widely intermingled, greatly increasing confusion among relationships than previously realized. The problematic species Physospermopsis cuneata is confirmed as falling within the East Asia clade, whereas P. rubrinervis allies with the generic type in tribe Pleurospermeae. Physospermopsis kingdon-wardii is confirmed as a member of the genus Physospermopsis, whereas the generic attributions of P. cuneata and Tongoloa stewardii remain unclear. Two species of Sinocarum (S. filicinum and S. wolffianum) are transferred into the genus Meeboldia. This is the most comprehensive molecular phylogenetic investigation of the East Asia clade to date, and while the results increase systematic understanding of the clade, they also highlight the need for further studies of one of the most taxonomically intractable groups in Apioideae.

4.
J Ethnopharmacol ; 329: 118149, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38580188

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Calcium oxalate crystals play a key role in the development and recurrence of kidney stones (also known as urolithiasis); thus, inhibiting the formation of these crystals is a central focus of urolithiasis prevention and treatment. Previously, we reported the noteworthy in vitro inhibitory effects of Aspidopterys obcordata fructo oligosaccharide (AOFOS), an active polysaccharide of the traditional Dai medicine Aspidopterys obcordata Hemsl. (commonly known as Hei Gai Guan), on the growth of calcium oxalate crystals. AIM OF THE STUDY: To investigated the effectiveness and mechanism of AOFOS in treating kidney stones. MATERIALS AND METHODS: A kidney stones rats model was developed, followed by examining AOFOS transport dynamics and effectiveness in live rats. Additionally, a correlation between the polysaccharide and calcium oxalate crystals was studied by combining crystallization experiments with density functional theory calculations. RESULTS: The results showed that the polysaccharide was transported to the urinary system. Furthermore, their accumulation was inhibited by controlling their crystallization and modulating calcium ion and oxalate properties in the urine. Consequently, this approach helped effectively prevent kidney stone formation in the rats. CONCLUSIONS: The present study emphasized the role of the polysaccharide AOFOS in modulating crystal properties and controlling crystal growth, providing valuable insights into their potential therapeutic use in managing kidney stone formation.


Subject(s)
Calcium Oxalate , Crystallization , Kidney Calculi , Animals , Calcium Oxalate/chemistry , Calcium Oxalate/metabolism , Male , Rats , Kidney Calculi/prevention & control , Kidney Calculi/drug therapy , Rats, Sprague-Dawley , Oligosaccharides/pharmacology , Oligosaccharides/chemistry , Urolithiasis/drug therapy , Urolithiasis/prevention & control , Disease Models, Animal , Inulin/chemistry , Inulin/pharmacology
5.
Molecules ; 28(24)2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38138466

ABSTRACT

The polysaccharides extracted from Aspidopterys obcordata are thought to have anti-urolithiasis activity in Drosophila kidney stones. This study aimed to assess the effects of different extraction solvents on the yield, chemical composition, and bioactivity of polysaccharides from A. obcordata. A. obcordata polysaccharides were extracted by using four solutions: hot water, HCl solution, NaOH solution, and 0.1 M NaCl. The results revealed that the extraction solvents significantly influenced the extraction yields, molecular weight distribution, monosaccharide compositions, preliminary structural characteristics, and microstructures of polysaccharides. The NaOH solution's extraction yield was significantly higher than the other extraction methods. Vitro antioxidant activity assays revealed that the NaOH solution extracted exhibited superior scavenging abilities towards DPPH and ABTS radicals and higher FRAP values than other polysaccharides. The vitro assays conducted for calcium oxalate crystallization demonstrated that four polysaccharides exhibited inhibitory effects on the nucleation and aggregation of calcium oxalate crystals, impeded calcium oxalate monohydrate growth, and induced calcium oxalate dihydrate formation. The NaOH solution extracted exhibited the most pronounced inhibition of calcium oxalate crystal nucleation, while the hot water extracted demonstrated the most significant suppression of calcium oxalate crystal aggregation. Therefore, it can be inferred that polysaccharides extracted with NaOH solution exhibited significant potential as a viable approach for extracting polysaccharides from stems due to their superior yield and the remarkable bioactivity of the resulting products.


Subject(s)
Calcium Oxalate , Polysaccharides , Calcium Oxalate/chemistry , Solvents , Sodium Hydroxide , Polysaccharides/pharmacology , Polysaccharides/chemistry , Water
6.
BMC Plant Biol ; 23(1): 368, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37488499

ABSTRACT

BACKGROUND: Sium L. (Apiaceae) is a small genus distributed primarily in Eurasia, with one species also occurring in North America. Recently, its circumscription has been revised to include 10 species, however, the phylogenetic relationships within its two inclusive clades were poorly supported or collapsed in previous studies based on nuclear ribosomal DNA ITS or cpDNA sequences. To identify molecular markers suitable for future intraspecific phylogeographic and population genetic studies, and to evaluate the efficacy of plastome in resolving the phylogenetic relationships of the genus, the complete chloroplast (cp) genomes of six Sium species were sequenced. RESULTS: The Sium plastomes exhibited typical quadripartite structures of Apiaceae and most other higher plant plastid DNAs, and were relatively conserved in their size (153,029-155,006 bp), gene arrangement and content (with 114 unique genes). A total of 61-67 SSRs, along with 12 highly divergent regions (trnQ, trnG-atpA, trnE-trnT, rps4-trnT, accD-psbI, rpl16, ycf1-ndhF, ndhF-rpl32, rpl32-trnL, ndhE-ndhG, ycf1a and ycf1b) were discovered in the plastomes. No significant IR length variation was detected showing that plastome evolution was conserved within this genus. Phylogenomic analysis based on whole chloroplast genome sequences produced a highly resolved phylogenetic tree, in which the monophyly of Sium, as well as the sister relationship of its two inclusive clades were strongly supported. CONCLUSIONS: The plastome sequences could greatly improve phylogenetic resolution, and will provide genomic resources and potential markers useful for future studies of the genus.


Subject(s)
Apiaceae , Genome, Chloroplast , Phylogeny , Apiaceae/genetics , Plastids/genetics , Genomics , Genome, Chloroplast/genetics , Evolution, Molecular
7.
Mitochondrial DNA B Resour ; 8(3): 451-456, 2023.
Article in English | MEDLINE | ID: mdl-37006959

ABSTRACT

Ligusticopsis acaulis, belonging to the family Apiaceae (Umbelliferae), is endemic to China. The complete chloroplast genome sequence of L. acaulis was assembled and annotated for the first time in this study. The results showed that the plastome was 148,509 bp in length and consisted of a pair of inverted repeat regions (IRs: 19,468 bp), a large single-copy region (LSC: 91,902 bp), and a small single-copy region (SSC: 17,671 bp). A total of 114 unique genes were annotated, including 80 protein-coding, 30 tRNA, and four rRNA genes. According to the phylogenetic analysis, L. acaulis belongs to the tribe Selineae, with a close relationship to Ligusticum hispidum (Franch.) Wolff.

8.
Molecules ; 27(19)2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36234934

ABSTRACT

Seven new sesquiterpenes, named croargoid A-G (1-7), were isolated from the bark of Croton argyratus. Compounds 1-4 were the first examples of eudesmane sesquiterpene lactones containing C5-OH group. Compound 7 was a highly degraded eudesmane sesquiterpene possessing a rare eleven-carbon skeleton. Their structures with stereochemistry were mainly elucidated by NMR analyses in combination with MS and ECD data. Cytotoxicities and NO inhibitions of all isolates were evaluated and only compound 5 showed moderate NO inhibitory activity.


Subject(s)
Croton , Sesquiterpenes, Eudesmane , Sesquiterpenes , Carbon , Lactones/pharmacology , Molecular Structure , Plant Bark , Sesquiterpenes/chemistry , Sesquiterpenes/pharmacology , Sesquiterpenes, Eudesmane/chemistry , Sesquiterpenes, Eudesmane/pharmacology
9.
Nat Prod Res ; 31(14): 1598-1603, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28278686

ABSTRACT

Two new lignans, (Z)-14-bis(3',4'-dimethoxyphenyl)-2,3-dimethylbut-2-ene-1,4-dione (1), threo-2-methyl-3-oxo-1-(3',4',5'-trimethoxyphenyl)butyl-3″,4″-dimethoxybenzoate (2), together with 15 known derivatives (3-17) were isolated from Saururus chinensis. Their structures were determined on the basis of spectral data, including 1D and 2D NMR experiments and HREIMS spectra. The antitumour activity was screened by MTT assay, compounds 1, 2, 3, 5, 9-11 and 13-15 showed no cytotoxic activity against HL-60, SMMC-7721, A549, MCF-7 and SW480 cell lines.


Subject(s)
Lignans/isolation & purification , Saururaceae/chemistry , Cell Line, Tumor , Humans , Lignans/chemistry , Molecular Structure , Plant Extracts/chemistry , Plant Roots/chemistry , Spectrum Analysis
10.
Nat Prod Res ; 29(13): 1228-34, 2015.
Article in English | MEDLINE | ID: mdl-25801582

ABSTRACT

A new triterpenoid bearing octacosanoate, named taraxer-3ß-yl octacosanoate (1), together with 13 known compounds (2-14), was isolated from the ethanol extract of the stems and roots of Clerodendrum philippinum var. simplex. The structure of taraxer-3ß-yl octacosanoate (1) was elucidated by extensive spectroscopic analysis. Uncinatone (8) and clerodenone A (10) exhibited inhibition of lipopolysaccharide-induced nitric oxide production in RAW 264.7 macrophages with IC50 values of 12.50 and 3.18 µM, respectively.


Subject(s)
Clerodendrum/chemistry , Fatty Acids/chemistry , Macrophages/drug effects , Triterpenes/chemistry , Abietanes/chemistry , Abietanes/isolation & purification , Animals , Cell Line , Fatty Acids/isolation & purification , Lipopolysaccharides , Mice , Molecular Structure , Nitric Oxide/metabolism , Plant Roots/chemistry , Plant Stems/chemistry , Triterpenes/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...