Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phytother Res ; 36(8): 3248-3264, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35599350

ABSTRACT

Intestinal mucus barrier dysfunction is closely involved in the pathogenesis of inflammatory bowel diseases (IBD). To investigate the protective effect and underlying mechanism of arctigenin, a phytoestrogen isolated from the fruits of Arctium lappa L., on the intestinal mucus barrier under colitis condition. The role of arctigenin on the intestinal mucus barrier and the apoptosis of goblet cells were examined by using both in vitro and in vivo assays. Arctigenin was demonstrated to promote the mucus secretion and maintain the integrity of mucus barrier, which might be achieved by an increase in the number of goblet cells via inhibiting apoptosis. Arctigenin selectively inhibited the mitochondrial pathway-mediated apoptosis. Moreover, arctigenin elevated the protein level of prohibitin 1 (PHB1) through blocking the ubiquitination via activation of estrogen receptor ß (ERß) to competitively interact with PHB1 and disrupt the binding of tripartite motif 21 (TRIM21) with PHB1. ERß knock down in the colons of mice with DSS-induced colitis resulted in significant reduction of the protection of arctigenin and DPN against the mucosal barrier. Arctigenin can maintain the integrity of the mucus barrier by inhibiting the apoptosis of goblet cells through the ERß/TRIM21/PHB1 pathway.


Subject(s)
Colitis , Inflammatory Bowel Diseases , Animals , Apoptosis , Colitis/chemically induced , Estrogen Receptor beta/metabolism , Furans , Goblet Cells/metabolism , Goblet Cells/pathology , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/pathology , Lignans , Mice , Mice, Inbred C57BL , Mucus/metabolism , Phytoestrogens , Prohibitins
2.
Br J Pharmacol ; 173(7): 1219-35, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26750154

ABSTRACT

BACKGROUND AND PURPOSE: Madecassoside has potent anti-pulmonary fibrosis (PF) effects when administered p.o., despite having extremely low oral bioavailability. Herein, we explored the mechanism of this anti-PF effect with regard to gut hormones. EXPERIMENTAL APPROACH: A PF model was established in mice by intratracheal instillation of bleomycin. Haematoxylin and eosin stain and Masson's trichrome stain were used to assess histological changes in the lung. Quantitative-PCR and Western blot detected mRNA and protein levels, respectively, and cytokines were measured by ELISA. Small interfering RNA was used for gene-silencing. EMSA was applied to detect DNA-binding activity. KEY RESULTS: Administration of madecassoside, p.o., but not its main metabolite madecassic acid, exhibited a direct anti-PF effect in mice. However, i.p. madecassoside had no anti-PF effect. Madecassoside increased the expression of hepatocyte growth factor (HGF) in colon tissues, and HGF receptor antagonists attenuated its anti-PF effect. Madecassoside facilitated the secretion of HGF from colonic epithelial cells by activating the PPAR-γ pathway, as shown by an up-regulation of PPAR-γ mRNA expression, nuclear translocation and DNA-binding activity both in vitro and in vivo. Also GW9662, a selective PPAR-γ antagonist, almost completely prevented the madecassoside-induced increased expression of HGF and amelioration of PF. CONCLUSIONS AND IMPLICATIONS: The potent anti-PF effects induced by p.o. madecassoside in mice are not mediated by its metabolites or itself after absorption into blood. Instead, madecassoside increases the activity of PPAR-γ, which subsequently increases HGF expression in colonic epithelial cells. HGF then enters into the circulation and lung tissue to exert an anti-PF effect.


Subject(s)
Bleomycin , Colon/drug effects , Hepatocyte Growth Factor/metabolism , PPAR gamma/metabolism , Pulmonary Fibrosis/drug therapy , Triterpenes/therapeutic use , Animals , Cell Line, Tumor , Cell Survival/drug effects , Colon/metabolism , Female , Gene Silencing , Hepatocyte Growth Factor/antagonists & inhibitors , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Lung/drug effects , Lung/pathology , Mice, Inbred ICR , PPAR gamma/antagonists & inhibitors , PPAR gamma/genetics , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/metabolism , Triterpenes/pharmacology
3.
Int J Biol Sci ; 11(9): 1113-26, 2015.
Article in English | MEDLINE | ID: mdl-26221077

ABSTRACT

Norisoboldine (NOR), the primary isoquinoline alkaloid constituent of the root of Lindera aggregata, has previously been demonstrated to attenuate osteoclast (OC) differentiation. Accumulative evidence has shown that aryl hydrocarbon receptor (AhR) plays an important role in regulating the differentiation of various cells, and multiple isoquinoline alkaloids can modulate AhR. In the present study, we explored the role of NOR in the AhR signaling pathway. These data showed that the combination of AhR antagonist resveratrol (Res) or α-naphthoflavone (α-NF) nearly reversed the inhibition of OC differentiation through NOR. NOR could stably bind to AhR, up-regulate the nuclear translocation of AhR, and enhance the accumulation of the AhR-ARNT complex, AhR-mediated reporter gene activity and CYP1A1 expression in RAW 264.7 cells, suggesting that NOR might be an agonist of AhR. Moreover, NOR inhibited the nuclear translocation of NF-κB-p65, resulting in the evident accumulation of the AhR-NF-κB-p65 complex, which could be markedly inhibited through either Res or α-NF. Although NOR only slightly affected the expression of HIF-1α, NOR markedly reduced VEGF mRNA expression and ARNT-HIF-1α complex accumulation. In vivo studies indicated that NOR decreased the number of OCs and ameliorated the bone erosion in the joints of rats with collagen-induced arthritis, accompanied by the up-regulation of CYP1A1 and the down-regulation of VEGF mRNA expression in the synovium of rats. A combination of α-NF nearly completely reversed the effects of NOR. In conclusion, NOR attenuated OC differentiation and bone erosion through the activation of AhR and the subsequent inhibition of both NF-κB and HIF pathways.


Subject(s)
Alkaloids/pharmacology , Alkaloids/therapeutic use , Arthritis/metabolism , Lindera/chemistry , Osteoclasts/cytology , Osteoclasts/drug effects , Receptors, Aryl Hydrocarbon/metabolism , Animals , Arthritis/drug therapy , Cell Differentiation/drug effects , Cell Line , Inflammation/drug therapy , Inflammation/metabolism , Male , Mice , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , RANK Ligand/pharmacology , Rats , Rats, Wistar , Receptors, Aryl Hydrocarbon/genetics , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...