Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Cell Rep ; 43(3): 113826, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38412093

ABSTRACT

Anaplastic thyroid carcinoma is arguably the most lethal human malignancy. It often co-occurs with differentiated thyroid cancers, yet the molecular origins of its aggressivity are unknown. We sequenced tumor DNA from 329 regions of thyroid cancer, including 213 from patients with primary anaplastic thyroid carcinomas. We also whole genome sequenced 9 patients using multi-region sequencing of both differentiated and anaplastic thyroid cancer components. Using these data, we demonstrate thatanaplastic thyroid carcinomas have a higher burden of mutations than other thyroid cancers, with distinct mutational signatures and molecular subtypes. Further, different cancer driver genes are mutated in anaplastic and differentiated thyroid carcinomas, even those arising in a single patient. Finally, we unambiguously demonstrate that anaplastic thyroid carcinomas share a genomic origin with co-occurring differentiated carcinomas and emerge from a common malignant field through acquisition of characteristic clonal driver mutations.


Subject(s)
Adenocarcinoma , Thyroid Carcinoma, Anaplastic , Thyroid Neoplasms , Humans , Thyroid Carcinoma, Anaplastic/genetics , Thyroid Carcinoma, Anaplastic/pathology , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology , Mutation/genetics , Genomics
2.
Biomolecules ; 14(1)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38275767

ABSTRACT

The intracellular and intercellular flux of calcium ions represents an ancient and universal mode of signaling that regulates an extensive array of cellular processes. Evidence for the central role of calcium signaling includes various techniques that allow the visualization of calcium activity in living cells. While extensively investigated in mature cells, calcium activity is equally important in developing cells, particularly the embryonic nervous system where it has been implicated in a wide variety array of determinative events. However, unlike in mature cells, where the calcium dynamics display regular, predictable patterns, calcium activity in developing systems is far more sporadic, irregular, and diverse. This renders the ability to assess calcium activity in a consistent manner extremely challenging, challenges reflected in the diversity of methods employed to analyze calcium activity in neural development. Here we review the wide array of calcium detection and analysis methods used across studies, limiting the extent to which they can be comparatively analyzed. The goal is to provide investigators not only with an overview of calcium activity analysis techniques currently available, but also to offer suggestions for future work and standardization to enable informative comparative evaluations of this fundamental and important process in neural development.


Subject(s)
Calcium , Neurons , Calcium/analysis , Neurons/physiology , Neurogenesis , Signal Transduction
3.
Nat Commun ; 15(1): 535, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38233424

ABSTRACT

Information for organismal patterning can come from a variety of sources. We investigate the possibility that instructive influences for normal embryonic development are provided not only at the level of cells within the embryo, but also via interactions between embryos. To explore this, we challenge groups of embryos with disruptors of normal development while varying group size. Here, we show that Xenopus laevis embryos are much more sensitive to a diverse set of chemical and molecular-biological perturbations when allowed to develop alone or in small groups, than in large groups. Keeping per-embryo exposure constant, we find that increasing the number of exposed embryos in a cohort increases the rate of survival while incidence of defects decreases. This inter-embryo assistance effect is mediated by short-range diffusible signals and involves the P2 ATP receptor. Our data and computational model emphasize that morphogenesis is a collective phenomenon not only at the level of cells, but also of whole bodies, and that cohort size is a crucial variable in studies of ecotoxicology, teratogenesis, and developmental plasticity.


Subject(s)
Calcium , Teratogens , Humans , Pregnancy , Animals , Female , Teratogens/toxicity , Calcium/pharmacology , Morphogenesis , Signal Transduction , Xenopus laevis , Adenosine Triphosphate/pharmacology , Embryo, Nonmammalian
4.
bioRxiv ; 2023 Dec 09.
Article in English | MEDLINE | ID: mdl-38106088

ABSTRACT

Sequencing of bulk tumor populations has improved genetic classification and risk assessment of B-ALL, but does not directly examine intratumor heterogeneity or infer leukemia cellular origins. We profiled 89 B-ALL samples by single-cell RNA-seq (scRNA-seq) and compared them to a reference map of normal human B-cell development established using both functional and molecular assays. Intra-sample heterogeneity was driven by cell cycle, metabolism, differentiation, and inflammation transcriptional programs. By inference of B lineage developmental state composition, nearly all samples possessed a high abundance of pro-B cells, with variation between samples mainly driven by sub-populations. However, ZNF384- r and DUX4- r B-ALL showed composition enrichment of hematopoietic stem cells, BCR::ABL1 and KMT2A -r ALL of Early Lymphoid progenitors, MEF2D -r and TCF3::PBX1 of Pre-B cells. Enrichment of Early Lymphoid progenitors correlated with high-risk clinical features. Understanding variation in transcriptional programs and developmental states of B-ALL by scRNA-seq refines existing clinical and genomic classifications and improves prediction of treatment outcome.

5.
Nat Genet ; 55(7): 1186-1197, 2023 07.
Article in English | MEDLINE | ID: mdl-37337105

ABSTRACT

In BCR-ABL1 lymphoblastic leukemia, treatment heterogeneity to tyrosine kinase inhibitors (TKIs), especially in the absence of kinase domain mutations in BCR-ABL1, is poorly understood. Through deep molecular profiling, we uncovered three transcriptomic subtypes of BCR-ABL1 lymphoblastic leukemia, each representing a maturation arrest at a stage of B-cell progenitor differentiation. An earlier arrest was associated with lineage promiscuity, treatment refractoriness and poor patient outcomes. A later arrest was associated with lineage fidelity, durable leukemia remissions and improved patient outcomes. Each maturation arrest was marked by specific genomic events that control different transition points in B-cell development. Interestingly, these events were absent in BCR-ABL1+ preleukemic stem cells isolated from patients regardless of subtype, which supports that transcriptomic phenotypes are determined downstream of the leukemia-initialing event. Overall, our data indicate that treatment response and TKI efficacy are unexpected outcomes of the differentiation stage at which this leukemia transforms.


Subject(s)
Fusion Proteins, bcr-abl , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Fusion Proteins, bcr-abl/genetics , Fusion Proteins, bcr-abl/metabolism , Transcriptome/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Gene Expression Profiling , Cell Differentiation/genetics , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use
6.
Leukemia ; 36(11): 2690-2704, 2022 11.
Article in English | MEDLINE | ID: mdl-36131042

ABSTRACT

Many cancers are organized as cellular hierarchies sustained by cancer stem cells (CSC), whose eradication is crucial for achieving long-term remission. Difficulties to isolate and undertake in vitro and in vivo experimental studies of rare CSC under conditions that preserve their original properties currently constitute a bottleneck for identifying molecular mechanisms involving coding and non-coding genomic regions that govern stemness. We focussed on acute myeloid leukemia (AML) as a paradigm of the CSC model and developed a patient-derived system termed OCI-AML22 that recapitulates the cellular hierarchy driven by leukemia stem cells (LSC). Through classical flow sorting and functional analyses, we established that a single phenotypic population is highly enriched for LSC. The LSC fraction can be easily isolated and serially expanded in culture or in xenografts while faithfully recapitulating functional, transcriptional and epigenetic features of primary LSCs. A novel non-coding regulatory element was identified with a new computational approach using functionally validated primary AML LSC fractions and its role in LSC stemness validated through efficient CRISPR editing using methods optimized for OCI-AML22 LSC. Collectively, OCI-AML22 constitutes a valuable resource to uncover mechanisms governing CSC driven malignancies.


Subject(s)
Leukemia, Myeloid, Acute , Neoplastic Stem Cells , Humans , Neoplastic Stem Cells/pathology , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology
7.
Nat Med ; 28(6): 1212-1223, 2022 06.
Article in English | MEDLINE | ID: mdl-35618837

ABSTRACT

The treatment landscape of acute myeloid leukemia (AML) is evolving, with promising therapies entering clinical translation, yet patient responses remain heterogeneous, and biomarkers for tailoring treatment are lacking. To understand how disease heterogeneity links with therapy response, we determined the leukemia cell hierarchy makeup from bulk transcriptomes of more than 1,000 patients through deconvolution using single-cell reference profiles of leukemia stem, progenitor and mature cell types. Leukemia hierarchy composition was associated with functional, genomic and clinical properties and converged into four overall classes, spanning Primitive, Mature, GMP and Intermediate. Critically, variation in hierarchy composition along the Primitive versus GMP or Primitive versus Mature axes were associated with response to chemotherapy or drug sensitivity profiles of targeted therapies, respectively. A seven-gene biomarker derived from the Primitive versus Mature axis was associated with response to 105 investigational drugs. Cellular hierarchy composition constitutes a novel framework for understanding disease biology and advancing precision medicine in AML.


Subject(s)
Leukemia, Myeloid, Acute , Biomarkers , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism
8.
NPJ Genom Med ; 7(1): 18, 2022 Mar 14.
Article in English | MEDLINE | ID: mdl-35288587

ABSTRACT

Cardiomyopathy (CMP) is a heritable disorder. Over 50% of cases are gene-elusive on clinical gene panel testing. The contribution of variants in non-coding DNA elements that result in cryptic splicing and regulate gene expression has not been explored. We analyzed whole-genome sequencing (WGS) data in a discovery cohort of 209 pediatric CMP patients and 1953 independent replication genomes and exomes. We searched for protein-coding variants, and non-coding variants predicted to affect the function or expression of genes. Thirty-nine percent of cases harbored pathogenic coding variants in known CMP genes, and 5% harbored high-risk loss-of-function (LoF) variants in additional candidate CMP genes. Fifteen percent harbored high-risk regulatory variants in promoters and enhancers of CMP genes (odds ratio 2.25, p = 6.70 × 10-7 versus controls). Genes involved in α-dystroglycan glycosylation (FKTN, DTNA) and desmosomal signaling (DSC2, DSG2) were most highly enriched for regulatory variants (odds ratio 6.7-58.1). Functional effects were confirmed in patient myocardium and reporter assays in human cardiomyocytes, and in zebrafish CRISPR knockouts. We provide strong evidence for the genomic contribution of functionally active variants in new genes and in regulatory elements of known CMP genes to early onset CMP.

9.
Blood Cancer Discov ; 3(1): 16-31, 2022 01.
Article in English | MEDLINE | ID: mdl-35019858

ABSTRACT

Central nervous system (CNS) dissemination of B-precursor acute lymphoblastic leukemia (B-ALL) has poor prognosis and remains a therapeutic challenge. Here we performed targeted DNA sequencing as well as transcriptional and proteomic profiling of paired leukemia-infiltrating cells in the bone marrow (BM) and CNS of xenografts. Genes governing mRNA translation were upregulated in CNS leukemia, and subclonal genetic profiling confirmed this in both BM-concordant and BM-discordant CNS mutational populations. CNS leukemia cells were exquisitely sensitive to the translation inhibitor omacetaxine mepesuccinate, which reduced xenograft leptomeningeal disease burden. Proteomics demonstrated greater abundance of secreted proteins in CNS-infiltrating cells, including complement component 3 (C3), and drug targeting of C3 influenced CNS disease in xenografts. CNS-infiltrating cells also exhibited selection for stemness traits and metabolic reprogramming. Overall, our study identifies targeting of mRNA translation as a potential therapeutic approach for B-ALL leptomeningeal disease. SIGNIFICANCE: Cancer metastases are often driven by distinct subclones with unique biological properties. Here we show that in B-ALL CNS disease, the leptomeningeal environment selects for cells with unique functional dependencies. Pharmacologic inhibition of mRNA translation signaling treats CNS disease and offers a new therapeutic approach for this condition.This article is highlighted in the In This Issue feature, p. 1.


Subject(s)
Central Nervous System Diseases , Central Nervous System Neoplasms , Meningeal Neoplasms , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Central Nervous System/metabolism , Central Nervous System Diseases/pathology , Central Nervous System Neoplasms/drug therapy , Humans , Meningeal Neoplasms/pathology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Protein Biosynthesis/genetics , Proteomics
10.
Cell Stem Cell ; 28(10): 1838-1850.e10, 2021 10 07.
Article in English | MEDLINE | ID: mdl-34343492

ABSTRACT

It is critical to understand how human quiescent long-term hematopoietic stem cells (LT-HSCs) sense demand from daily and stress-mediated cues and then transition into bioenergetically active progeny to differentiate and meet these cellular needs. However, the demand-adapted regulatory circuits of these early steps of hematopoiesis are largely unknown. Here we show that lysosomes, sophisticated nutrient-sensing and signaling centers, are regulated dichotomously by transcription factor EB (TFEB) and MYC to balance catabolic and anabolic processes required for activating LT-HSCs and guiding their lineage fate. TFEB-mediated induction of the endolysosomal pathway causes membrane receptor degradation, limiting LT-HSC metabolic and mitogenic activation, promoting quiescence and self-renewal, and governing erythroid-myeloid commitment. In contrast, MYC engages biosynthetic processes while repressing lysosomal catabolism, driving LT-HSC activation. Our study identifies TFEB-mediated control of lysosomal activity as a central regulatory hub for proper and coordinated stem cell fate determination.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Hematopoiesis , Hematopoietic Stem Cells , Cell Differentiation , Hematopoietic Stem Cells/cytology , Humans , Lysosomes , Signal Transduction
11.
Front Mol Neurosci ; 14: 672511, 2021.
Article in English | MEDLINE | ID: mdl-34262434

ABSTRACT

The tweety genes encode gated chloride channels that are found in animals, plants, and even simple eukaryotes, signifying their deep evolutionary origin. In vertebrates, the tweety gene family is highly conserved and consists of three members-ttyh1, ttyh2, and ttyh3-that are important for the regulation of cell volume. While research has elucidated potential physiological functions of ttyh1 in neural stem cell maintenance, proliferation, and filopodia formation during neural development, the roles of ttyh2 and ttyh3 are less characterized, though their expression patterns during embryonic and fetal development suggest potential roles in the development of a wide range of tissues including a role in the immune system in response to pathogen-associated molecules. Additionally, members of the tweety gene family have been implicated in various pathologies including cancers, particularly pediatric brain tumors, and neurodegenerative diseases such as Alzheimer's and Parkinson's disease. Here, we review the current state of research using information from published articles and open-source databases on the tweety gene family with regard to its structure, evolution, expression during development and adulthood, biochemical and cellular functions, and role in human disease. We also identify promising areas for further research to advance our understanding of this important, yet still understudied, family of genes.

12.
Science ; 373(6551)2021 07 09.
Article in English | MEDLINE | ID: mdl-34244384

ABSTRACT

Children with Down syndrome have a 150-fold increased risk of developing myeloid leukemia, but the mechanism of predisposition is unclear. Because Down syndrome leukemogenesis initiates during fetal development, we characterized the cellular and developmental context of preleukemic initiation and leukemic progression using gene editing in human disomic and trisomic fetal hematopoietic cells and xenotransplantation. GATA binding protein 1 (GATA1) mutations caused transient preleukemia when introduced into trisomy 21 long-term hematopoietic stem cells, where a subset of chromosome 21 microRNAs affected predisposition to preleukemia. By contrast, progression to leukemia was independent of trisomy 21 and originated in various stem and progenitor cells through additional mutations in cohesin genes. CD117+/KIT proto-oncogene (KIT) cells mediated the propagation of preleukemia and leukemia, and KIT inhibition targeted preleukemic stem cells.


Subject(s)
Cell Cycle Proteins/genetics , Down Syndrome/genetics , GATA1 Transcription Factor/genetics , Hematopoietic Stem Cells/physiology , Leukemia, Myeloid/genetics , Preleukemia/genetics , Animals , Antigens, CD34/analysis , Cell Cycle Proteins/metabolism , Cell Lineage , Cell Proliferation , Cell Transformation, Neoplastic , Chromosomal Proteins, Non-Histone/genetics , Chromosomes, Human, Pair 21/genetics , Chromosomes, Human, Pair 21/metabolism , Disease Models, Animal , Disease Progression , Down Syndrome/complications , Female , GATA1 Transcription Factor/metabolism , Hematopoiesis , Hematopoietic Stem Cell Transplantation , Heterografts , Humans , Leukemia, Myeloid/metabolism , Leukemia, Myeloid/pathology , Liver/embryology , Male , Megakaryocytes/physiology , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Mutation , Preleukemia/metabolism , Preleukemia/pathology , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Mas , Proto-Oncogene Proteins c-kit/analysis , Proto-Oncogene Proteins c-kit/antagonists & inhibitors , Cohesins
13.
Nat Immunol ; 22(6): 723-734, 2021 06.
Article in English | MEDLINE | ID: mdl-33958784

ABSTRACT

Continuous supply of immune cells throughout life relies on the delicate balance in the hematopoietic stem cell (HSC) pool between long-term maintenance and meeting the demands of both normal blood production and unexpected stress conditions. Here we identified distinct subsets of human long-term (LT)-HSCs that responded differently to regeneration-mediated stress: an immune checkpoint ligand CD112lo subset that exhibited a transient engraftment restraint (termed latency) before contributing to hematopoietic reconstitution and a primed CD112hi subset that responded rapidly. This functional heterogeneity and CD112 expression are regulated by INKA1 through direct interaction with PAK4 and SIRT1, inducing epigenetic changes and defining an alternative state of LT-HSC quiescence that serves to preserve self-renewal and regenerative capacity upon regeneration-mediated stress. Collectively, our data uncovered the molecular intricacies underlying HSC heterogeneity and self-renewal regulation and point to latency as an orchestrated physiological response that balances blood cell demands with preserving a stem cell reservoir.


Subject(s)
Cell Self Renewal/immunology , Hematopoietic Stem Cells/physiology , Immune Reconstitution , Multipotent Stem Cells/physiology , Stress, Physiological/immunology , Adult , Animals , Cell Self Renewal/genetics , Cells, Cultured , Epigenesis, Genetic/immunology , Female , Fetal Blood/cytology , Flow Cytometry , Gene Knockdown Techniques , Hematopoiesis , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , Immunomagnetic Separation , Infant, Newborn , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Male , Mice , Middle Aged , Nectins/metabolism , Primary Cell Culture , RNA-Seq , Single-Cell Analysis , Sirtuin 1/metabolism , Stress, Physiological/genetics , Transplantation, Heterologous , p21-Activated Kinases/genetics , p21-Activated Kinases/metabolism
14.
Blood Cancer Discov ; 2(1): 32-53, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33458693

ABSTRACT

Acute myeloid leukemia (AML) is a caricature of normal hematopoiesis, driven from leukemia stem cells (LSC) that share some hematopoietic stem cell (HSC) programs including responsiveness to inflammatory signaling. Although inflammation dysregulates mature myeloid cells and influences stemness programs and lineage determination in HSC by activating stress myelopoiesis, such roles in LSC are poorly understood. Here, we show that S1PR3, a receptor for the bioactive lipid sphingosine-1-phosphate, is a central regulator which drives myeloid differentiation and activates inflammatory programs in both HSC and LSC. S1PR3-mediated inflammatory signatures varied in a continuum from primitive to mature myeloid states across AML patient cohorts, each with distinct phenotypic and clinical properties. S1PR3 was high in LSC and blasts of mature myeloid samples with linkages to chemosensitivity, while S1PR3 activation in primitive samples promoted LSC differentiation leading to eradication. Our studies open new avenues for therapeutic target identification specific for each AML subset.


Subject(s)
Leukemia, Myeloid, Acute , Neoplastic Stem Cells , Sphingosine-1-Phosphate Receptors , Cell Differentiation , Hematopoietic Stem Cells , Humans , Leukemia, Myeloid, Acute/drug therapy , Sphingosine-1-Phosphate Receptors/metabolism
15.
Cell Stem Cell ; 28(3): 488-501.e10, 2021 03 04.
Article in English | MEDLINE | ID: mdl-33242413

ABSTRACT

Lifelong blood production requires long-term hematopoietic stem cells (LT-HSCs), marked by stemness states involving quiescence and self-renewal, to transition into activated short-term HSCs (ST-HSCs) with reduced stemness. As few transcriptional changes underlie this transition, we used single-cell and bulk assay for transposase-accessible chromatin sequencing (ATAC-seq) on human HSCs and hematopoietic stem and progenitor cell (HSPC) subsets to uncover chromatin accessibility signatures, one including LT-HSCs (LT/HSPC signature) and another excluding LT-HSCs (activated HSPC [Act/HSPC] signature). These signatures inversely correlated during early hematopoietic commitment and differentiation. The Act/HSPC signature contains CCCTC-binding factor (CTCF) binding sites mediating 351 chromatin interactions engaged in ST-HSCs, but not LT-HSCs, enclosing multiple stemness pathway genes active in LT-HSCs and repressed in ST-HSCs. CTCF silencing derepressed stemness genes, restraining quiescent LT-HSCs from transitioning to activated ST-HSCs. Hence, 3D chromatin interactions centrally mediated by CTCF endow a gatekeeper function that governs the earliest fate transitions HSCs make by coordinating disparate stemness pathways linked to quiescence and self-renewal.


Subject(s)
Chromatin , Hematopoietic Stem Cells , Cell Differentiation , Cell Division , Hematopoiesis , Humans
16.
Cancer Discov ; 10(4): 568-587, 2020 04.
Article in English | MEDLINE | ID: mdl-32086311

ABSTRACT

Disease recurrence causes significant mortality in B-progenitor acute lymphoblastic leukemia (B-ALL). Genomic analysis of matched diagnosis and relapse samples shows relapse often arising from minor diagnosis subclones. However, why therapy eradicates some subclones while others survive and progress to relapse remains obscure. Elucidation of mechanisms underlying these differing fates requires functional analysis of isolated subclones. Here, large-scale limiting dilution xenografting of diagnosis and relapse samples, combined with targeted sequencing, identified and isolated minor diagnosis subclones that initiate an evolutionary trajectory toward relapse [termed diagnosis Relapse Initiating clones (dRI)]. Compared with other diagnosis subclones, dRIs were drug-tolerant with distinct engraftment and metabolic properties. Transcriptionally, dRIs displayed enrichment for chromatin remodeling, mitochondrial metabolism, proteostasis programs, and an increase in stemness pathways. The isolation and characterization of dRI subclones reveals new avenues for eradicating dRI cells by targeting their distinct metabolic and transcriptional pathways before further evolution renders them fully therapy-resistant. SIGNIFICANCE: Isolation and characterization of subclones from diagnosis samples of patients with B-ALL who relapsed showed that relapse-fated subclones had increased drug tolerance and distinct metabolic and survival transcriptional programs compared with other diagnosis subclones. This study provides strategies to identify and target clinically relevant subclones before further evolution toward relapse.


Subject(s)
Leukemia, Myeloid, Acute/genetics , Clone Cells , Female , Humans , Male , Recurrence
18.
Nat Genet ; 52(2): 231-240, 2020 02.
Article in English | MEDLINE | ID: mdl-31932696

ABSTRACT

Pancreatic adenocarcinoma presents as a spectrum of a highly aggressive disease in patients. The basis of this disease heterogeneity has proved difficult to resolve due to poor tumor cellularity and extensive genomic instability. To address this, a dataset of whole genomes and transcriptomes was generated from purified epithelium of primary and metastatic tumors. Transcriptome analysis demonstrated that molecular subtypes are a product of a gene expression continuum driven by a mixture of intratumoral subpopulations, which was confirmed by single-cell analysis. Integrated whole-genome analysis uncovered that molecular subtypes are linked to specific copy number aberrations in genes such as mutant KRAS and GATA6. By mapping tumor genetic histories, tetraploidization emerged as a key mutational process behind these events. Taken together, these data support the premise that the constellation of genomic aberrations in the tumor gives rise to the molecular subtype, and that disease heterogeneity is due to ongoing genomic instability during progression.


Subject(s)
Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Adult , Aged , Aged, 80 and over , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/mortality , Cohort Studies , Female , GATA6 Transcription Factor/genetics , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Genomic Instability , Humans , Male , Middle Aged , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/mortality , Phenotype , Proto-Oncogene Proteins p21(ras)/genetics , Smad4 Protein/genetics
20.
Cancer Cell ; 35(2): 267-282.e7, 2019 02 11.
Article in English | MEDLINE | ID: mdl-30686769

ABSTRACT

We integrated clinical, genomic, and transcriptomic data from 224 primaries and 95 metastases from 289 patients to characterize progression of pancreatic ductal adenocarcinoma (PDAC). Driver gene alterations and mutational and expression-based signatures were preserved, with truncations, inversions, and translocations most conserved. Cell cycle progression (CCP) increased with sequential inactivation of tumor suppressors, yet remained higher in metastases, perhaps driven by cell cycle regulatory gene variants. Half of the cases were hypoxic by expression markers, overlapping with molecular subtypes. Paired tumor heterogeneity showed cancer cell migration by Halstedian progression. Multiple PDACs arising synchronously and metachronously in the same pancreas were actually intra-parenchymal metastases, not independent primary tumors. Established clinical co-variates dominated survival analyses, although CCP and hypoxia may inform clinical practice.


Subject(s)
Biomarkers, Tumor/genetics , Carcinoma, Pancreatic Ductal/genetics , Cell Cycle/genetics , Cell Movement/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Liver Neoplasms/genetics , Mutation , Pancreatic Neoplasms/genetics , Transcription, Genetic , Animals , Biomarkers, Tumor/metabolism , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/secondary , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Genetic Predisposition to Disease , Humans , Israel , Liver Neoplasms/metabolism , Liver Neoplasms/secondary , Mice , Neoplasm Invasiveness , North America , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Phenotype , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptome , Tumor Hypoxia
SELECTION OF CITATIONS
SEARCH DETAIL
...