Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Mater Chem A Mater ; 12(2): 802-812, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38178865

ABSTRACT

Zeolites have been well known for decades as catalytic materials and adsorbents and are traditionally prepared using the bottom-up synthesis method. Although it was productive for more than 250 zeolite frameworks, the conventional solvothermal synthesis approach provided limited control over the structural characteristics of the formed materials. In turn, the discovery and development of the Assembly-Disassembly-Organization-Reassembly (ADOR) strategy for the regioselective manipulation of germanosilicates enabled the synthesis of previously unattainable zeolites with predefined structures. To date, the family tree of ADOR materials has included the topological branches of UTL, UOV, IWW, *CTH, and IWV zeolites. Herein, we report on the expansion of ADOR zeolites with a new branch related to the IWR topology, which is yet unattainable experimentally but theoretically predicted as highly promising adsorbents for CO2 separation applications. The optimization of not only the chemical composition but also the dimensions of the crystalline domain in the parent IWR zeolite in the Assembly step was found to be the key to the success of its ADOR transformation into previously unknown IPC-17 zeolite with an intersecting 12 × 8 × 8-ring pore system. The structure of the as-prepared IPC-17 zeolite was verified by a combination of microscopic and diffraction techniques, while the results on the epichlorohydrin ring-opening with alcohols of variable sizes proved the molecular sieving ability of IPC-17 with potential application in heterogeneous catalysis. The proposed synthesis strategy may facilitate the discovery of zeolite materials that are difficult or yet impossible to achieve using a traditional bottom-up synthesis approach.

2.
J Am Chem Soc ; 145(16): 9081-9091, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37040083

ABSTRACT

Zeolites are key materials in both basic research and industrial applications. However, their synthesis is neither diverse nor applicable to labile frameworks because classical procedures require harsh hydrothermal conditions, whereas post-synthesis methods are limited to a few suitable parent materials. Remaining frameworks can fail due to amorphization, dissolution, and other decomposition processes. Nevertheless, stopping degradation at intermediate structures could yield new zeolites. Here, by optimizing the design and synthesis parameters of the parent zeolite IWV, we "caught" a new, highly crystalline, and siliceous zeolite during its degradation. IWV seed-assisted crystallization followed by gentle transformation into the water-alcohol system yielded the highly crystalline daughter zeolite IPC-20, whose structure was solved by precession-assisted three-dimensional electron diffraction. Without additional requirements, as in conventional (direct or post-synthesis) strategies, our approach may be applied to any chemically labile material with a staged structure.

3.
Chemistry ; 28(35): e202201468, 2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35616147

ABSTRACT

Invited for the cover of this issue are Maksym Opanasenko and co-workers at Charles University in Prague, IKTS and deepXscan GmbH in Dresden. The image depicts a controllable crystallization mechanism that can be switched from classical to reversed crystal growth by manipulating the interplay between silica particles and the structure-directing agent. Read the full text of the article at 10.1002/chem.202200590.

4.
Chemistry ; 28(35): e202200590, 2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35439329

ABSTRACT

Crystal growth mechanisms govern a wide range of properties of crystalline materials. Reversed crystal growth is one of the nonclassical mechanisms observed in many materials. However, the reversed crystallization starting from amorphous aggregates and the key factors driving this growth remain elusive. Here, we describe a characteristic model of reversed crystal growth representing the inner structure and crystallinity development of aggregates studied by microscopy and nano X-ray computed tomography. By adjusting the synthesis conditions, the fundamental function of the structure-directing agent, which determines the crystallization pathway, was revealed. As a result, the crystal growth mode can be "switched" from the classical route at a low ratio of SDA/framework elements to reversed growth at a high ratio. Our findings provide further insights into crystal growth control, which is crucial for improving synthesis protocols and designing various forms of crystalline materials.

5.
Angew Chem Int Ed Engl ; 59(35): 14818-14824, 2020 Aug 24.
Article in English | MEDLINE | ID: mdl-32374498

ABSTRACT

The catalytic decomposition of formic acid to generate syngas (a mixture of H2 and CO) is a highly valuable strategy for energy conversion. Syngas can be used directly in internal combustion engines or can be converted to liquid fuels, meeting future energy challenges in a sustainable manner. Herein, we report the use of homogeneous molecular iron catalysts combined with a CdS nanorods (NRs) semiconductor to construct a highly efficient photocatalytic system for direct conversion of formic acid to syngas at room temperature and atmospheric pressure. Under optimal conditions, the photocatalytic system presents an activity of 150 mmol gcatalyst -1 h-1 towards H2 , and an apparent quantum yield (AQY) of 16.8 %, making it among the most active noble-metal-free photocatalytic systems for H2 evolution from formic acid under visible light. Meanwhile, these iron-based molecular catalysts also demonstrate remarkable enhancement in CO evolution with robust stability. The mechanistic role of the molecular catalyst is further investigated by using cyclic voltammetry, which suggests the formation of FeI species as the key step in the catalytic conversion of formic acid to syngas.

6.
Nat Commun ; 10(1): 5129, 2019 11 12.
Article in English | MEDLINE | ID: mdl-31719520

ABSTRACT

Owing to the significant difference in the numbers of simulated and experimentally feasible zeolite structures, several alternative strategies have been developed for zeolite synthesis. Despite their rationality and originality, most of these techniques are based on trial-and-error, which makes it difficult to predict the structure of new materials. Assembly-Disassembly-Organization-Reassembly (ADOR) method overcoming this limitation was successfully applied to a limited number of structures with relatively stable crystalline layers (UTL, UOV, *CTH). Here, we report a straightforward, vapour-phase-transport strategy for the transformation of IWW zeolite with low-density silica layers connected by labile Ge-rich units into material with new topology. In situ XRD and XANES studies on the mechanism of IWW rearrangement reveal an unusual structural distortion-reconstruction of the framework throughout the process. Therefore, our findings provide a step forward towards engineering nanoporous materials and increasing the number of zeolites available for future applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...