Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Opt Lett ; 49(11): 2894-2897, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824286

ABSTRACT

Coded aperture snapshot spectral imaging (CASSI) can capture hyperspectral images (HSIs) in one shot, but it suffers from optical aberrations that degrade the reconstruction quality. Existing deep learning methods for CASSI reconstruction lose some performance on real data due to aberrations. We propose a method to restore high-resolution HSIs from a low-resolution CASSI measurement. We first generate realistic training data that mimics the optical aberrations of CASSI using a spectral imaging simulation technique. A generative network is then trained on this data to recover HSIs from a blurred and distorted CASSI measurement. Our method adapts to the optical system degradation model and thus improves the reconstruction robustness. Experiments on both simulated and real data indicate that our method significantly enhances the image quality of reconstruction outcomes and can be applied to different CASSI systems.

2.
bioRxiv ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38798655

ABSTRACT

Inflammation is an essential defense response but operates at the cost of normal functions. Whether and how the negative impact of inflammation is monitored remains largely unknown. Acidification of the tissue microenvironment is associated with inflammation. Here we investigated whether macrophages sense tissue acidification to adjust inflammatory responses. We found that acidic pH restructured the inflammatory response of macrophages in a gene-specific manner. We identified mammalian BRD4 as a novel intracellular pH sensor. Acidic pH disrupts the transcription condensates containing BRD4 and MED1, via histidine-enriched intrinsically disordered regions. Crucially, decrease in macrophage intracellular pH is necessary and sufficient to regulate transcriptional condensates in vitro and in vivo, acting as negative feedback to regulate the inflammatory response. Collectively, these findings uncovered a pH-dependent switch in transcriptional condensates that enables environmental sensing to directly control inflammation, with a broader implication for calibrating the magnitude and quality of inflammation by the inflammatory cost.

SELECTION OF CITATIONS
SEARCH DETAIL