Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Front Immunol ; 14: 1095848, 2023.
Article in English | MEDLINE | ID: mdl-37006297

ABSTRACT

Introduction: Dendrobium officinale Kimura et Migo (D. officinale) , widely called as "life-saving immortal grass" by Chinese folk, is a scarce and endangered species. The edible stems of D. officinale have been extensively studied for active chemical components and various bioactivities. However, few studies have reported the well-being beneficial effects of D. officinale flowers (DOF). Therefore, the present study aimed to investigate the in vitro biological potency of its aqueous extract and screen its active components. Methods: Antioxidant tests, including 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), the ferric reducing ability of plasma (FRAP), and intracellular reactive oxygen species (ROS) level analyses in primary human epidermal keratinocytes, anti-cyclooxygenase2 (COX-2) assay, anti-glycation assay (both fluorescent AGEs formation in a BSA fructose/glucose system and glycation cell assay), and anti-aging assay (quantification of collagen types I and III, and SA-ß-gal staining assay) were conducted to determine the potential biological effects of DOF extracts and its major compounds. Ultra-performance liquid chromatography-electrospray ionisation-quadrupole-time-of-flight-mass spectrometry (UPLC-ESI-QTOF-MS/MS) was performed to investigate the composition of DOF extracts. Online antioxidant post-column bioassay tests were applied to rapidly screen major antioxidants in DOF extracts. Results and discussion: The aqueous extract of D. officinale flowers was found to have potential antioxidant capacity, anti-cyclooxygenase2 (COX-2) effect, anti-glycation potency, and anti-aging effects. A total of 34 compounds were identified using UPLC-ESI-QTOF-MS/MS. Online ABTS radical analysis demonstrated that 1-O-caffeoyl-ß-D-glucoside, vicenin-2, luteolin-6-C-ß-D-xyloside-8-C-ß--D-glucoside, quercetin-3-O-sophoroside, rutin, isoquercitrin, and quercetin 3-O-(6″-O-malonyl)-ß-D-glucoside are the major potential antioxidants. In addition, all selected 16 compounds exerted significant ABTS radical scavenging ability and effective AGE suppressive activities. However, only certain compounds, such as rutin and isoquercitrin, displayed selective and significant antioxidant abilities, as shown by DPPH and FRAP, as well as potent COX-2 inhibitory capacity, whereas the remaining compounds displayed relatively weak or no effects. This indicates that specific components contributed to different functionalities. Our findings justified that DOF and its active compound targeted related enzymes and highlighted their potential application in anti-aging.


Subject(s)
Antioxidants , Dendrobium , Humans , Antioxidants/chemistry , Tandem Mass Spectrometry , Cyclooxygenase 2 , Plant Extracts/pharmacology , Plant Extracts/chemistry , Flowers/chemistry , Rutin , Aging , Phytochemicals , Glucosides
2.
Heliyon ; 9(2): e13709, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36852058

ABSTRACT

The purpose of the study was to establish a rapid analytical strategy to screen potential anti-inflammatory compounds from Flos Chrysanthemum flower. The enzyme assay was conducted to prescreen botanical extracts, in which Chrysanthemum morifolium aqueous extract (CME) displayed hyaluronidase (HAase) inhibitory activity in a dose-dependent manner with the values of 8.31, 24.25, and 66.51% at concentrations of 1.00, 2.00, and 4 0.00 mg/mL, respectively. Eight potential compounds targeting HAase (compounds 9, 10, 11, 13, 15, 17, 20 and 21) from CME were screened using ultrafiltration affinity liquid chromatography coupled with mass spectrometry (UF-LC-MS) technology. The well-known inhibitor, dipotassium glycyrrhizinate (DG), was used as a positive control and competitive ligand to eliminate false positives. Then, four of these potential components (compounds 9, 10, 17, and 21), namely eriodictyol-7-O-glucoside, luteoloside, apigenin-7-O-glucoside and diosmetin-7-O-glucoside, were distinguished as potent HAase specific inhibitor candidates with high BD and CBD values. The enzyme inhibitory activities of candidate compounds were verified using enzyme inhibition assay. At a concentration of 1000 µM, compounds 9, 10, 17, and 21 showed 40.15, 44.85, 18.04, and 24.15% inhibition of HAase, respectively. Furthermore, all the four compounds significantly decreased the production of nitric oxide (NO) and IL-6, and significantly suppressed the mRNA expression of inducible NO synthase (iNOS) and IL-1ß in both murine and human macrophages.

5.
Phytomedicine ; 107: 154484, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36215787

ABSTRACT

BACKGROUND: Translocator protein (TSPO) is an 18-kDa transmembrane protein found primarily in the mitochondrial outer membrane, and it is implicated in inflammatory responses, such as cytokine release. Koumine (KM) is an indole alkaloid extracted from Gelsemium elegans Benth. It has been reported to be a high-affinity ligand of TSPO and to exert anti-inflammatory and immunomodulatory effects in our recent studies. However, the protective effect of KM on sepsis-associated liver injury (SALI) and its mechanisms are unknown. PURPOSE: To explore the role of TSPO in SALI and then further explore the protective effect and mechanism of KM on SALI. METHODS: The effect of KM on the survival rate of septic mice was confirmed in mouse models of caecal ligation and puncture (CLP)-induced and lipopolysaccharide (LPS)-induced sepsis. The protective effect of KM on CLP-induced SALI was comprehensively evaluated by observing the morphology of the mouse liver and measuring liver injury markers. The serum cytokine content was detected in mice by flow cytometry. Macrophage polarization in the liver was examined using western blotting. TSPO knockout mice were used to explore the role of TSPO in sepsis liver injury and verify the protective effect of KM on sepsis liver injury through TSPO. RESULTS: KM significantly improved the survival rate of both LPS- and CLP-induced sepsis in mice. KM has a significant liver protective effect on CLP-induced sepsis in mice. KM treatment ameliorated liver ischaemia, improved liver pathological injuries, and decreased the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH) and proinflammatory cytokines in serum. Western blotting results showed that KM inhibited M1 polarization of macrophages and promoted M2 polarization. In TSPO knockout mice, we found that TSPO knockout can improve the survival rate of septic mice, ameliorate liver ischaemia, improve liver pathological injuries, and decrease the levels of ALT, AST, and LDH. In addition, TSPO knockout inhibits the M1 polarization of macrophages in the liver of septic mice and promotes M2 polarization and the serum levels of proinflammatory cytokines. Interestingly, in TSPO knockout septic mice, these protective effects of KM were no longer effective. CONCLUSIONS: We report for the first time that TSPO plays a critical role in sepsis-associated liver injury by regulating the polarization of liver macrophages and reducing the inflammatory response. KM, a TSPO ligand, is a potentially desirable candidate for the treatment of SALI that may regulate macrophage M1/M2 polarization through TSPO in the liver.


Subject(s)
Lipopolysaccharides , Sepsis , Alanine Transaminase/metabolism , Animals , Anti-Inflammatory Agents/pharmacology , Aspartate Aminotransferases/metabolism , Carrier Proteins/metabolism , Cytokines/metabolism , Indole Alkaloids/pharmacology , Lactate Dehydrogenases/metabolism , Ligands , Lipopolysaccharides/pharmacology , Liver/metabolism , Macrophages , Mice , Mice, Knockout , Sepsis/complications , Sepsis/drug therapy , Sepsis/metabolism
7.
Front Pharmacol ; 12: 806091, 2021.
Article in English | MEDLINE | ID: mdl-34950042

ABSTRACT

Gelsemium elegans (G. elegans) Benth., recognized as a toxic plant, has been used as traditional Chinese medicine for the treatment of neuropathic pain and cancer for many years. In the present study, we aim to obtain the anti-tumor effects of alkaloids of G. elegans and their active components in hepatocellular carcinoma (HCC) and the potential mechanism was also further investigated. We demonstrated that sempervirine induced HCC cells apoptosis and the apoptosis was associated with cell cycle arrest during the G1 phase, up-regulation of p53 and down-regulation of cyclin D1, cyclin B1 and CDK2. Furthermore, sempervirine inhibited HCC tumor growth and enhances the anti-tumor effect of sorafenib in vivo. In addition, inactivation of Wnt/ß-catenin pathway was found to be involved in sempervirine-induced HCC proliferation. The present study demonstrated that alkaloids of G. elegans were a valuable source of active compounds with anti-tumor activity. Our findings justified that the active compound sempervirine inhibited proliferation and induced apoptosis in HCC by regulating Wnt/ß-catenin pathway.

8.
J Heart Lung Transplant ; 40(12): 1502-1516, 2021 12.
Article in English | MEDLINE | ID: mdl-34742645

ABSTRACT

BACKGROUND: Regulatory B cells (Bregs) play an important role in maintaining immune homeostasis and have the potential to induce tolerance. Previous work has found that Breg cells are involved in heart transplantation tolerance. However, the effect of Breg on the transplantation tolerance and the underlying mechanisms remain to be clarified. METHODS: Using a within-species heart transplantation model, we aimed to investigate the role of CD19+CD5+CD1dhigh Bregs isolated from transplanted mice in preventing transplant rejection in vivo. We also explored the effects of CD40 and tumor necrosis factor receptor-associated factor 6 (TRAF6) ubiquitin ligase on Breg-mediated prolongation of survival in heart transplant (HT) mice, and the regulatory effects of downstream Cdk4 and Cdk6 proteins on dendritic cells (DCs), which clarified the function and molecular mechanism of Breg cells in HT mice. RESULTS: Our data suggest that adoptive transfer of the transplanted Bregs served as an effective tolerance-inducing mechanism in HT mice and was involved in the CD40-TRAF6 signaling pathway in DCs. Moreover, DCs collected from the Breg treated HT mice also prolonged the survival of HT mice. Furthermore, DC-specific knockout of TRAF6 diminished Breg-mediated prolongation of survival in HT mice. Interestingly, gut microbes from donors increased the survival of cardiac allografts both in both the absence and presence of Bregs but were not implicated in CD40-TRAF6 signaling. CONCLUSIONS: These findings reveal a role of Breg cells in the induction of transplantation tolerance through the blockade of the CD40-TRAF6 signaling pathway, which might be used in the treatment of HT in the clinic.


Subject(s)
Adoptive Transfer , B-Lymphocytes, Regulatory/transplantation , Graft Rejection/prevention & control , Heart Transplantation/adverse effects , Transplantation Tolerance/physiology , Animals , CD40 Antigens/metabolism , Cyclin-Dependent Kinase 4/metabolism , Cyclin-Dependent Kinase 6/metabolism , Dendritic Cells/metabolism , Dendritic Cells/pathology , Disease Models, Animal , Female , Gastrointestinal Microbiome , Graft Rejection/metabolism , Graft Rejection/pathology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Signal Transduction , TNF Receptor-Associated Factor 6/metabolism
9.
Phytomedicine ; 90: 153640, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34330066

ABSTRACT

BACKGROUND: Diabetic neuropathic pain (DNP), a complication of diabetes, has serious impacts on human health. As the pathogenesis of DNP is very complex, clinical treatments for DNP is limited. Koumine (KM) is an active ingredient extracted from Gelsemium elegans Benth. that exerts an inhibitory effect on neuropathic pain (NP) in several animal models. PURPOSE: To clarify the anti-NP effect of KM on rats with DNP and the molecular mechanisms involving the Notch- Jκ recombination signal binding protein (RBP-Jκ) signaling pathway. METHODS: Male Sprague-Dawley rats were administered streptozocin (STZ) by intraperitoneal injection to induce DNP. The effect of KM on mechanical hyperalgesia in rats with DNP was evaluated using the Von Frey test. Microglial polarization in the spinal cord was examined using western blotting and quantitative real-time PCR. The Notch-RBP-Jκ signaling pathway was analysed using western blotting. RESULTS: KM attenuated DNP during the observation period. In addition, KM alleviated M1 microglial polarization in STZ-induced rats. Subsequent experiments revealed that Notch-RBP-Jκ signaling pathway was activated in the spinal cord of rats with DNP, and the activation of this pathways was decreased by KM. Additionally, KM-mediated analgesia and deactivation of the Notch-RBP-Jκ signaling pathway were inhibited by the Notch signaling agonist jagged 1, indicating that the anti-DNP effect of KM may be regulated by the Notch-RBP-Jκ signaling pathway. CONCLUSIONS: KM is a potentially desirable candidate treatment for DNP that may inhibit microglial M1 polarization through the Notch-RBP-Jκ signaling pathway.


Subject(s)
Diabetes Mellitus , Indole Alkaloids/pharmacology , Microglia/drug effects , Neuralgia , Signal Transduction/drug effects , Animals , Cell Polarity , Immunoglobulin J Recombination Signal Sequence-Binding Protein/metabolism , Male , Neuralgia/drug therapy , Rats , Rats, Sprague-Dawley , Receptors, Notch/metabolism
10.
Lab Invest ; 101(9): 1176-1185, 2021 09.
Article in English | MEDLINE | ID: mdl-34108631

ABSTRACT

Asthma is an allergic inflammatory lung disease affecting nearly 300 million people worldwide. To better understand asthma, new regulators must be identified. We conducted a study to investigate the effect and mechanisms of action of surfactant protein A (SPA) in OVA-induced asthmatic mice. Treatment with SPA delayed the onset of asthma, decreased its severity, as well as notably suppressed pro-inflammatory cytokine production. Furthermore, SPA-treated mice possessed more leukocytes; more CD4+ T cells infiltrated the spleen in the SPA-treated mice than in the control mice, and there were decreased percentages of Th1 and Th17 cells in vivo. In addition, expression levels of the T-bet (Th1 transcription factor) and RORγt (Th17 transcription factor) genes were significantly downregulated by SPA treatment. Moreover, SPA reduced the production and mRNA expression of pro-inflammatory cytokine mRNAs in activated T cells in vivo. Mechanistically, SPA could inhibit STAT1/4 and STAT3 phosphorylation, resulting in the differentiation of Th1 and suppression of Th17 cells, respectively. In the presence of CD3/CD28 expression, STAT1/4 and STAT3 were activated but suppressed by SPA, which was responsible for the augmentation of Th1 and Th17 differentiation. This result showed that SPA can effectively modulate the JAK/STAT pathway by suppressing Th1 and Th17 differentiation, thus preventing asthma. The present study reveals the novel immunomodulatory activity of SPA and highlights the importance of further investigating the effects of SPA on asthma.


Subject(s)
Asthma/metabolism , Pulmonary Surfactant-Associated Protein A/pharmacology , Signal Transduction/drug effects , Th1 Cells/drug effects , Th17 Cells/drug effects , Animals , Asthma/chemically induced , Asthma/physiopathology , Female , Janus Kinases/metabolism , Mice , Mice, Inbred C57BL , Ovalbumin/adverse effects , STAT Transcription Factors/metabolism , Th1 Cells/metabolism , Th17 Cells/metabolism
12.
Pharmacol Res ; 148: 104368, 2019 10.
Article in English | MEDLINE | ID: mdl-31415918

ABSTRACT

In the effort to identify natural products that regulate immunity and inflammation, we found that nitidine chloride (NC), an alkaloid from herb Zanthoxylum nitidum, enhanced IL-10 production in lipopolysaccharide (LPS)-stimulated myeloid cells. While NC was shown to be capable of inhibiting topoisomerase I (TOP1), NC analogs that could not inhibit TOP1 failed to increase IL-10 production. Moreover, medicinal TOP1 inhibitors TPT and SN-38 also augmented IL-10 production significantly, whereas knockdown of TOP1 prevented NC, TPT, and SN-38 from enhancing IL-10 expression. Thus, NC promoted IL-10 production by inhibiting TOP1. In LPS-induced endotoxemic mice, NC and TOP1 inhibitors increased IL-10 production, suppressed inflammatory responses, and reduced mortality remarkably. The anti-inflammatory activities of TOP1 inhibition were markedly reduced by IL-10-neutralizing antibody and largely absent in IL-10-deficient mice. In LPS-stimulated RAW264.7 cells and in peritoneal macrophages from endotoxemic mice, NC and TOP1 inhibitors significantly enhanced the activation of Akt, a critical signal transducer for IL-10 production, and inhibition of Akt prevented these compounds from enhancing IL-10 production and ameliorating endotoxemia. These data indicated that NC and TOP1 inhibitors are able to exert anti-inflammatory action through enhancing Akt-mediated IL-10 production and may assist with the treatment of inflammatory diseases.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Benzophenanthridines/pharmacology , DNA Topoisomerases, Type I/metabolism , Interleukin-10/metabolism , Animals , Cell Line , Humans , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/metabolism , Inflammation Mediators/metabolism , Lipopolysaccharides/pharmacology , Male , Mice , Mice, Inbred BALB C , RAW 264.7 Cells , Signal Transduction/drug effects , THP-1 Cells
13.
J Immunol Res ; 2019: 8325102, 2019.
Article in English | MEDLINE | ID: mdl-30915371

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is the most common and important chronic liver disease all over the world. In the present study, we found that koumine, the main and active ingredient isolated from Gelsemium elegans, has the potential therapeutic effect on NAFLD rats by immunomodulatory activity. Koumine could significantly reduce the level of TG, TC, LDL-C, ALT, and AST in the serum of NAFLD rats and increase the level of HDL-C, reduce the liver index, and improve the adipose-like lesions of liver cells in NAFLD rats. Furthermore, treatment with koumine inhibited the severity of NAFLD. In addition, koumine-treated rats significantly increased the proportion of CD4+/CD8+ T cells and also decreased the percentages of Th1 and Th17 cells and increased Th2 and Treg cells in the liver. Moreover, koumine reduced the production and mRNA expression of proinflammatory cytokines in vivo. This result showed that koumine could effectively modulate different subtypes of helper T cells and prevent NAFLD. The present study revealed the novel immunomodulatory activity of koumine and highlighted the importance to further investigate the effects of koumine on hepatic manifestation of the metabolic syndrome.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Indole Alkaloids/therapeutic use , Liver/pathology , Non-alcoholic Fatty Liver Disease/drug therapy , T-Lymphocytes, Regulatory/immunology , Th2 Cells/immunology , Animals , Disease Models, Animal , Gelsemium/immunology , Humans , Immunomodulation , Liver/drug effects , Male , Rats , Rats, Sprague-Dawley , Th1-Th2 Balance/drug effects
14.
Front Pharmacol ; 9: 989, 2018.
Article in English | MEDLINE | ID: mdl-30214411

ABSTRACT

Koumine, an indole alkaloid, is a major bioactive component of Gelsemium elegans. Previous studies have demonstrated that koumine has noticeable anti-inflammatory and analgesic effects in inflammatory and neuropathic pain (NP) models, but the mechanisms involved are not well understood. This study was designed to explore the analgesic effect of koumine on chronic constriction injury (CCI)-induced NP in rats and the underlying mechanisms, including astrocyte autophagy and apoptosis in the spinal cord. Rats with CCI-induced NP were used to evaluate the analgesic and anti-inflammatory effects of koumine. Lipopolysaccharide (LPS)-induced inflammation in rat primary astrocytes was also used to evaluate the anti-inflammatory effect of koumine. We found that repeated treatment with koumine significantly reduced and inhibited CCI-evoked astrocyte activation as well as the levels of pro-inflammatory cytokines. Meanwhile, we found that koumine promoted autophagy in the spinal cord of CCI rats, as reflected by decreases in the LC3-II/I ratio and P62 expression. Double immunofluorescence staining showed a high level of colocalization between LC3 and GFAP-positive glia cells, which could be decreased by koumine. Intrathecal injection of an autophagy inhibitor (chloroquine) reversed the analgesic effect of koumine, as well as the inhibitory effect of koumine on astrocyte activation in the spinal cord. In addition, TUNEL staining suggested that CCI-induced apoptosis was inhibited by koumine, and this inhibition could be abolished by chloroquine. Western blot analysis revealed that koumine significantly increased the level of Bcl-xl while inhibiting Bax expression and decreasing cleaved caspase-3. In addition, we found that koumine could decrease astrocyte-mediated neuroinflammation and enhance autophagy in primary cultured astrocytes. These results suggest that the analgesic effects of koumine on CCI-induced NP may involve inhibition of astrocyte activation and pro-inflammatory cytokine release, which may relate to the promotion of astrocyte autophagy and the inhibition for apoptosis in the spinal cord.

16.
Aging (Albany NY) ; 8(3): 521-33, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26946062

ABSTRACT

Standardized extracts of Bacopa monniera (BME) have been shown to exert a neuroprotective effect against mental diseases, such as depression, anxiety and Alzheimer's disease (AD), in chronic administration studies. However, its mechanism of action has remained unclear. In this study, we evaluated the therapeutic effect of Bacopaside I (BS-I), a major triterpenoid saponin of BME, on the cognitive impairment and neuropathology in APP/PS1 transgenic mice and explored the possible mechanism from a biological systems perspective. We found that BS-I treatment significantly ameliorated learning deficits, improved long-term spatial memory, and reduced plaque load in APP/PS1 mice. We constructed BS-I's therapeutic effect network by mapping the nodes onto the protein-protein interaction (PPI) network constructed according to their functional categories based on genomic and proteomic data. Because many of the top enrichment categories related to the processes of the immune system and phagocytosis were detected, we proposed that BS-I promotes amyloid clearance via the induction of a suitable degree of innate immune stimulation and phagocytosis. Our research may help to clarify the neuroprotective effect of BME and indicated that natural saponins target the immune system, which may offer new research avenues to discover novel treatments for AD.


Subject(s)
Alzheimer Disease/drug therapy , Amyloid beta-Peptides/drug effects , Bacopa , Phytotherapy , Saponins/therapeutic use , Triterpenes/therapeutic use , Alzheimer Disease/immunology , Alzheimer Disease/metabolism , Amyloid beta-Peptides/immunology , Amyloid beta-Peptides/metabolism , Animals , Blotting, Western , Disease Models, Animal , Male , Memory/drug effects , Mice, Inbred C57BL , Mice, Transgenic , Proteome , Saponins/pharmacology , Triterpenes/pharmacology
17.
Org Biomol Chem ; 14(9): 2618-24, 2016 Mar 07.
Article in English | MEDLINE | ID: mdl-26906292

ABSTRACT

Pseudolaridimer C (), a rarely encountered cycloartane-labdane Diels-Alder adduct was isolated from the cones of Pseudolarix amabilis. The structure and absolute configuration of were established by comprehensive NMR and CD spectral analysis. The WST-8 assay indicated that time and dose dependently inhibited the proliferation of human leukemia cells HL-60 at 1-10 µM. DAPI and Annexin V-FITC/PI double staining method, and DNA ladder experiments all proved that had significant dose-dependent effects on HL-60 cell apoptosis. A further mechanism study indicated that the apoptosis was associated with the cell cycle arrest during the G2/M phase, and the activation of caspase-9, -3, -7, and poly-(ADP-ribose)-polymerase (PARP).


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Dimerization , Diterpenes/pharmacology , Pinaceae/chemistry , Triterpenes/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Cell Proliferation/drug effects , Diterpenes/chemistry , Diterpenes/isolation & purification , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , HL-60 Cells , Humans , Molecular Conformation , Structure-Activity Relationship , Triterpenes/chemistry , Triterpenes/isolation & purification
18.
J Asian Nat Prod Res ; 18(5): 495-503, 2016 May.
Article in English | MEDLINE | ID: mdl-26751347

ABSTRACT

Eighteen terpenoids (1-18) were isolated from Illicium merrillianum. Compound 1 was identified as new compound, and its structure was established by comprehensive spectroscopic analysis and single-crystal X-ray diffraction. All compounds were evaluated for nerve growth factor (NGF)-mediated neurite outgrowth activity using rat pheochromocytoma (PC12) cells as a model system of neuronal differentiation. Compounds 1, 3, 18 showed significant neurite outgrowth-promoting activity in the presence of 20 ng/ml NGF in a dose-dependent manner at concentrations of 1-100 µM after 24-h treatment. Subtle difference of functional groups at C-2 position in hopane-type triterpene resulted in enormous bioactivity difference, compound 1 was neurotrophic but 2 was cytotoxic.


Subject(s)
Illicium/chemistry , Terpenes/isolation & purification , Terpenes/pharmacology , Animals , Crystallography, X-Ray , Molecular Conformation , Molecular Structure , Nerve Growth Factor , Neurites/drug effects , Neuronal Outgrowth/drug effects , Neurons/metabolism , PC12 Cells , Plant Leaves/chemistry , Rats , Terpenes/chemistry , X-Ray Diffraction
19.
Sci Rep ; 5: 16982, 2015 Nov 20.
Article in English | MEDLINE | ID: mdl-26585042

ABSTRACT

Merrillianoid (1), a racemic neolignan possessing the characteristic benzo-2,7-dioxabicyclo[3.2.1]octane moiety, was isolated from the branches and leaves of Illicium merrillianum. Chiral separation of 1 gave two enantiomers (+)-1 and (-)-1. The structure of 1 was established by comprehensive spectroscopic analysis and single crystal X-ray diffraction. The absolute configurations of enantiomers were determined by quantum mechanical calculation. Compound (+)-1 exhibited a better neurotrophic activity than racemate 1 by promoting nerve growth factor (NGF) induced PC12 cell neurite outgrowth, while (-)-1 showed a distinctive inhibitory effect. Furthermore, a mechanism study indicated that the two enantiomers influenced NGF-induced neurite outgrowth of PC12 cells possibly by interacting with the trkA receptor, and extracellular signal regulated kinases 1/2 (ERK1/2) and mitogen-activated protein kinase (MEK) in Ras/ERK signal cascade. But the phosphorylation level of serine/threonine kinase Akt1 and Akt2 in PI3K/Akt signal pathway showed no significant difference between (+)-1 and (-)-1.


Subject(s)
Illicium/chemistry , Lignans/pharmacology , Molecular Structure , Nerve Growth Factors/pharmacology , Neurites/drug effects , Animals , Blotting, Western , Cell Proliferation/drug effects , Circular Dichroism , Extracellular Signal-Regulated MAP Kinases/metabolism , Lignans/chemistry , Mitogen-Activated Protein Kinases/metabolism , Neurites/physiology , PC12 Cells , Rats , Receptor, trkA/metabolism , Signal Transduction/drug effects , Stereoisomerism , X-Ray Diffraction , ras Proteins/metabolism
20.
PLoS One ; 10(5): e0124632, 2015.
Article in English | MEDLINE | ID: mdl-25955557

ABSTRACT

Ischemic stroke is the third leading cause of death in the world. Our previous study found that cynandione A (CYNA), the main component from the root of Cynanchum bungei, exhibits anti-ischemic stroke activity. In this work, we investigated the therapeutic mechanisms of CYNA to ischemic stroke at protein network level. First, PC12 cells and cerebellar granule neurons were prepared to validate the effects of CYNA against glutamate injury. Our experiments suggested that CYNA could dose-dependently mitigate glutamate-induced neurons neurotoxicity and inhibit glutamate-induced upregulation of KHSRP and HMGB1, further confirming the neuroprotective effects of CYNA in vivo. Then, on the pathway sub-networks, which present biological processes that can be impacted directly or in periphery nodes by drugs via their targets, we found that CYNA regulates 11 pathways associated with the biological process of thrombotic or embolic occlusion of a cerebral artery. Meanwhile, by defining a network-based anti-ischemic stroke effect score, we showed that CYNA has a significantly higher effect score than random counterparts, which suggests a synergistic effect of CYNA to ischemic stroke. This study may shed new lights on the study of network based pharmacology.


Subject(s)
Biphenyl Compounds/therapeutic use , Brain Ischemia/complications , Brain Ischemia/drug therapy , Protein Interaction Mapping , Signal Transduction , Stroke/complications , Stroke/drug therapy , Animals , Animals, Newborn , Biphenyl Compounds/chemistry , Biphenyl Compounds/pharmacology , Gene Regulatory Networks/drug effects , Glutamic Acid/toxicity , Mice, Inbred C57BL , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Neurotoxins/toxicity , PC12 Cells , Proteomics , Rats , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...