Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Neurol ; 373: 114657, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38141802

ABSTRACT

Neuronal neurofibrillary tangles containing Tau hyperphosphorylation proteins are a typical pathological marker of Alzheimer's disease (AD). The level of tangles in neurons correlates positively with severe dementia. However, how Tau induces cognitive dysfunction is still unknown, which leads to a lack of effective treatments for AD. Metal ions deposition occurs with tangles in AD brain autopsy. Reduced metal ion can improve the pathology of AD. To explore whether abnormally phosphorylated Tau causes metal ion deposition, we overexpressed human full-length Tau (hTau) in the hippocampal CA3 area of mice and primary cultured hippocampal neurons (CPHN) and found that Tau accumulation induced iron deposition and activated calcineurin (CaN), which dephosphorylates glycogen synthase kinase 3 beta (GSK3ß), mediating Tau hyperphosphorylation. Simultaneous activation of CaN dephosphorylates cyclic-AMP response binding protein (CREB), leading to synaptic deficits and memory impairment, as shown in our previous study; this seems to be a vicious cycle exacerbating tauopathy. In the current study, we developed a new metal ion chelator that displayed a significant inhibitory effect on Tau phosphorylation and memory impairment by chelating iron ions in vivo and in vitro. These findings provide new insight into the mechanism of memory impairment induced by Tau accumulation and develop a novel potential treatment for tauopathy in AD.


Subject(s)
Alzheimer Disease , Tauopathies , Humans , Animals , Mice , Mice, Transgenic , Alzheimer Disease/metabolism , tau Proteins/metabolism , Tauopathies/pathology , Memory Disorders/drug therapy , Memory Disorders/etiology , Chelating Agents/pharmacology , Chelating Agents/therapeutic use , Ions , Iron , Phosphorylation , Glycogen Synthase Kinase 3 beta/metabolism
2.
J Biochem Mol Toxicol ; 37(10): e23403, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37701944

ABSTRACT

Doxorubicin (DOX) has been used to treat various types of cancer, but its application is limited due to its heart toxicity as well as other drawbacks. Chronic inhibition of Na+ /H+ exchanger (NHE1) reduces heart failure and reduces the production of reactive oxygen species (ROS); vitamin B6 (VitB6 ) has been demonstrated to have a crucial role in antioxidant mechanism. So, this study was designed to explore the effect of VitB6 supplement on the DOX-induced cardiotoxicity and to imply whether NHE1 is involved. Ultrasonic cardiogram analysis revealed that VitB6 supplement could alleviate DOX-induced cardiotoxicity; hematoxylin and eosin (HE) and Masson's staining further confirmed this effect. Furthermore, VitB6 supplement exhibited significant antioxidative stress and antiapoptosis effect, which was evidenced by decreased serum malondialdehyde (MDA) content and increased serum superoxide dismutase (SOD) content, and decreased Bcl-2-associated X protein/B-cell lymphoma-2 ratio, respectively. Collectively, VitB6 supplement may exert antioxidative and antiapoptosis effects to improve cardiac function by decreasing NHE1 expression and improve DOX-induced cardiotoxicity.


Subject(s)
Cardiotoxicity , Vitamin B 6 , Humans , Cardiotoxicity/prevention & control , Cardiotoxicity/metabolism , Vitamin B 6/pharmacology , Doxorubicin/toxicity , Antioxidants/pharmacology , Antioxidants/metabolism , Oxidative Stress , Vitamins/pharmacology , Apoptosis
3.
Eur J Pharmacol ; 955: 175874, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37394029

ABSTRACT

Vascular dementia (VD) is one of the most common causes of dementia, taking account for about 20% of all cases. Although studies have found that selenium supplementation can improve the cognitive ability of Alzheimer's patients, there is currently no research on the cognitive impairment caused by VD. This study aimed to investigate the role and mechanism of Amorphous selenium nanodots (A SeNDs) in the prevention of VD. The bilateral common carotid artery occlusion (BCCAO) method was used to establish a VD model. The neuroprotective effect of A SeNDs was evaluated by Morris water maze, Transcranial Doppler TCD, hematoxylin-eosin (HE) staining, Neuron-specific nuclear protein (Neu N) staining and Golgi staining. Detect the expression levels of oxidative stress and Calcium-calmodulin dependent protein kinase II (CaMK II), N-methyl-D-aspartate receptor subunit NR2A, and postsynaptic dense protein 95 (PSD95). Finally, measure the concentration of calcium ions in neuronal cells. The results showed that A SeNDs could significantly improve the learning and memory ability of VD rats, restore the posterior arterial blood flow of the brain, improve the neuronal morphology and dendritic remodeling of pyramidal cells in hippocampal CA1 area, reduce the level of oxidative stress in VD rats, increase the expression of NR2A, PSD95, CaMK II proteins and reduce intracellular calcium ion concentration, but the addition of selective NR2A antagonist NVP-AAMO77 eliminated these benefits. It suggests that A SeNDs may improve cognitive dysfunction in vascular dementia rats by regulating the NMDAR pathway.


Subject(s)
Dementia, Vascular , Selenium , Rats , Animals , Dementia, Vascular/drug therapy , Dementia, Vascular/metabolism , Selenium/pharmacology , Selenium/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Calcium/metabolism , Oxidative Stress , Hippocampus , Neurons/metabolism , Maze Learning
4.
Cell Biol Int ; 47(1): 178-187, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36183368

ABSTRACT

Ultrasound-mediated microbubble cavitation (UMMC) induces therapeutic angiogenesis to treat ischemic diseases. This study aimed to investigate whether diagnostic UMMC alleviates diabetic cardiomyopathy (DCM) and, if so, through which mechanisms. DCM model was established by injecting streptozocin into rats to induce hyperglycemia, followed by a high-fat diet. The combined therapy of cation microbubble with low-intensity diagnostic ultrasound (frequency = 4 MHz), with a pulse frequency of 20 Hz and pulse length (PL) of 8, 18, 26, or 36 cycles, was given to rats twice a week for 8 consecutive weeks. Diagnostic UMMC therapy with PL at 8, 18, and 26 cycles, but not 36 cycles, dramatically prevented myocardial fibrosis, improved heart functions, and increased angiogenesis, accompanied by increased levels of PI3K, Akt, and eNOS proteins in the DCM model of rats. In cultured endothelial cells, low-intensity UMMC treatment (PL = 3 cycles, sound pressure level = 50%, mechanical index = 0.82) increased cell viability and activated PI3K-Akt-eNOS signaling. The combination of diagnostic ultrasound with microbubble destruction dose-dependently promoted angiogenesis, thus improving heart function through PI3K-Akt-eNOS signaling in diabetes. Accordingly, diagnostic UMMC therapy should be considered to protect the heart in patients with diabetes.


Subject(s)
Diabetic Cardiomyopathies , Microbubbles , Animals , Rats , Diabetic Cardiomyopathies/therapy , Endothelial Cells/metabolism , Microbubbles/therapeutic use , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Ultrasonography/methods , Neovascularization, Physiologic , Disease Models, Animal
5.
Antioxidants (Basel) ; 11(11)2022 Nov 14.
Article in English | MEDLINE | ID: mdl-36421426

ABSTRACT

In type 2 diabetes mellitus (T2DM), oxidative stress induces endothelial dysfunction (ED), which is closely related to the formation of atherosclerosis. However, there are few effective drugs to prevent and cure it. Citronellal (CT) is an aromatic active substance extracted from citronella plants. Recently, CT has been shown to prevent ED, but the underlying mechanism remains unclear. The purpose of this study was to investigate whether CT ameliorated T2DM-induced ED by inhibiting the TRPM2/NHE1 signal pathway. Transient receptor potential channel M2 (TRPM2) is a Ca2+-permeable cation channel activated by oxidative stress, which damages endothelial cell barrier function and further leads to ED or atherosclerosis in T2DM. The Na+/H+ exchanger 1 (NHE1), a transmembrane protein, also plays an important role in ED. Whether TRPM2 and NHE1 are involved in the mechanism of CT improving ED in T2DM still needs further study. Through the evaluations of ophthalmoscope, HE and Oil red staining, vascular function, oxidative stress level, and mitochondrial membrane potential evaluation, we observed that CT not only reduced the formation of lipid deposition but also inhibited ED and suppressed oxidative stress-induced mitochondrial damage in vasculature of T2DM rats. The expressions of NHE1 and TRPM2 was up-regulated in the carotid vessels of T2DM rats; NHE1 expression was also upregulated in endothelial cells with overexpression of TRPM2, but CT reversed the up-regulation of NHE1 in vivo and in vitro. In contrast, CT had no inhibitory effect on the expression of NHE1 in TRPM2 knockout mice. Our study show that CT suppressed the expression of NHE1 and TPRM2, alleviated oxidative stress-induced mitochondrial damage, and imposed a protective effect on ED in T2DM rats.

SELECTION OF CITATIONS
SEARCH DETAIL
...