Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Bull (Beijing) ; 67(13): 1345-1351, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-36546267

ABSTRACT

Two-dimensional (2D) materials and their heterostructures have been intensively studied in recent years due to their potential applications in electronic, optoelectronic, and spintronic devices. Nonetheless, the realization of 2D heterostructures with atomically flat and clean interfaces remains challenging, especially for air-sensitive materials, which hinders the in-depth investigation of interface-induced phenomena and the fabrication of high-quality devices. Here, we circumvented this challenge by exfoliating 2D materials in an ultrahigh vacuum. Remarkably, ultraflat and clean substrate surfaces can assist the exfoliation of 2D materials, regardless of the substrate and 2D material, thus providing a universal method for the preparation of heterostructures with ideal interfaces. In addition, we studied the properties of two prototypical systems that cannot be achieved previously, including the electronic structure of monolayer phospherene and optical responses of transition metal dichalcogenides on different metal substrates. Our work paves the way to engineer rich interface-induced phenomena, such as proximity effects and moiré superlattices.

2.
Nat Commun ; 13(1): 7000, 2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36385244

ABSTRACT

The Su-Schrieffer-Heeger (SSH) model in a two-dimensional rectangular lattice features gapless or gapped Dirac cones with topological edge states along specific peripheries. While such a simple model has been recently realized in photonic/acoustic lattices and electric circuits, its material realization in condensed matter systems is still lacking. Here, we study the atomic and electronic structure of a rectangular Si lattice on Ag(001) by angle-resolved photoemission spectroscopy and theoretical calculations. We demonstrate that the Si lattice hosts gapped Dirac cones at the Brillouin zone corners. Our tight-binding analysis reveals that the Dirac bands can be described by a 2D SSH model with anisotropic polarizations. The gap of the Dirac cone is driven by alternative hopping amplitudes in one direction and staggered potential energies in the other one and hosts topological edge states. Our results establish an ideal platform to explore the rich physical properties of the 2D SSH model.

3.
Nano Lett ; 22(11): 4596-4602, 2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35536689

ABSTRACT

The destructive interference of wavefunctions in a kagome lattice can give rise to topological flat bands (TFBs) with a highly degenerate state of electrons. Recently, TFBs have been observed in several kagome metals, including Fe3Sn2, FeSn, CoSn, and YMn6Sn6. Nonetheless, kagome materials that are both exfoliable and semiconducting are lacking, which seriously hinders their device applications. Herein, we show that Nb3Cl8, which hosts a breathing kagome lattice, is gapped out because of the absence of inversion symmetry, while the TFBs survive because of the protection of the mirror reflection symmetry. By angle-resolved photoemission spectroscopy measurements and first-principles calculations, we directly observe the TFBs and a moderate band gap in Nb3Cl8. By mechanical exfoliation, we successfully obtain monolayer Nb3Cl8, which is stable under ambient conditions. In addition, our calculations show that monolayer Nb3Cl8 has a magnetic ground state, thus providing opportunities to study the interplay among geometry, topology, and magnetism.

4.
Nano Lett ; 22(2): 695-701, 2022 Jan 26.
Article in English | MEDLINE | ID: mdl-35029399

ABSTRACT

Dirac materials, which feature Dirac cones in the reciprocal space, have been one of the hottest topics in condensed matter physics in the past decade. To date, 2D and 3D Dirac Fermions have been extensively studied, while their 1D counterparts are rare. Recently, Si nanoribbons (SiNRs), which are composed of alternating pentagonal Si rings, have attracted intensive attention. However, the electronic structure and topological properties of SiNRs are still elusive. Here, by angle-resolved photoemission spectroscopy, scanning tunneling microscopy/spectroscopy measurements, first-principles calculations, and tight-binding model analysis, we demonstrate the existence of 1D Dirac Fermions in SiNRs. Our theoretical analysis shows that the Dirac cones derive from the armchairlike Si chain in the center of the nanoribbon and can be described by the Su-Schrieffer-Heeger model. These results establish SiNRs as a platform for studying the novel physical properties in 1D Dirac materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...