Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Nat Prod ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38832657

ABSTRACT

Phenazines are aromatic compounds with antifungal and cytotoxic activities. Phenazines incorporating phenazine 1-carboxylic acid have widespread applications in agriculture, medicine, and industry. Griseoluteic acid is a cytotoxic compound secreted by Streptomyces griseoluteus P510, displaying potential medical applications. However, the biosynthetic pathway of griseoluteic acid has not been elucidated, limiting its development and application. In this study, a conserved phenazine biosynthetic gene cluster of S. griseoluteus P510 was identified through genomic analysis. Subsequently, its was confirmed that the four essential modification enzymes SgpH, SgpI, SgpK, and SgpL convert phenazine-1,6-dicarboxylic acid into griseoluteic acid by heterologous expression in Escherichia coli. Moreover, the biosynthetic pathway of griseoluteic acid was established in Pseudomonas chlororaphis characterized by a high growth rate and synthesis efficiency of phenazines, laying the foundation for the efficient production of griseoluteic acid.

2.
ACS Synth Biol ; 13(3): 913-920, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38377538

ABSTRACT

The advancement of metabolic engineering and synthetic biology has promoted in-depth research on the nonmodel microbial metabolism, and the potential of nonmodel organisms in industrial biotechnology is becoming increasingly evident. The nonmodel organism Pseudomonas chlororaphis is a safe plant growth promoting bacterium for the production of phenazine compounds; however, its application is seriously hindered due to the lack of an effective gene expression precise regulation toolkit. In this study, we constructed a library of 108 promoter-5'-UTR (PUTR) and characterized them through fluorescent protein detection. Then, 6 PUTRs with stable low, intermediate, and high intensities were further characterized by report genes lacZ encoding ß-galactosidase from Escherichia coli K12 and phzO encoding PCA monooxygenase from P. chlororaphis GP72 and thus developed as a static gene expression regulation system. Furthermore, the stable and high-intensity expressed PMOK_RS0128085UTR was fused with the LacO operator to construct an IPTG-induced plasmid, and a self-induced plasmid was constructed employing the high-intensity PMOK_RS0116635UTR regulated by cell density, resulting in a dynamic gene expression regulation system. In summary, this study established two sets of static and dynamic regulatory systems for P. chlororaphis, providing an effective toolkit for fine-tuning gene expression and reprograming the metabolism flux.


Subject(s)
Pseudomonas chlororaphis , Pseudomonas chlororaphis/genetics , Pseudomonas chlororaphis/metabolism , Metabolic Engineering/methods , Gene Expression Regulation, Bacterial/genetics , Promoter Regions, Genetic/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
3.
Biology (Basel) ; 12(10)2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37887002

ABSTRACT

Phenazine compounds are widely used in agricultural control and the medicine industry due to their high inhibitory activity against pathogens and antitumor activity. The green and sustainable method of synthesizing phenazine compounds through microbial fermentation often requires a complex culture medium containing tryptone and yeast extract, and its cost is relatively high, which greatly limits the large-scale industrial production of phenazine compounds by fermentation. The aim of this study was to develop a cost-effective minimal medium for the efficient synthesis of phenazine compounds by Pseudomonas chlororaphis. Through testing the minimum medium commonly used by Pseudomonas, an ME medium for P. chlororaphis with a high production of phenazine compounds was obtained. Then, the components of the ME medium and the other medium were compared and replaced to verify the beneficial promoting effect of Fe2+ and NH4+ on phenazine compounds. A cost-effective general defined medium (GDM) using glycerol as the sole carbon source was obtained by optimizing the composition of the ME medium. Using the GDM, the production of phenazine compounds by P. chlororaphis reached 1073.5 mg/L, which was 1.3 times that achieved using a complex medium, while the cost of the GDM was only 10% that of a complex medium (e.g., the KB medium). Finally, by engineering the glycerol metabolic pathway, the titer of phenazine-1-carboxylic acid reached the highest level achieved using a minimum medium so far. This work demonstrates how we systematically analyzed and optimized the composition of the medium and integrated a metabolic engineering method to obtain the most cost-effective fermentation strategy.

4.
J Appl Microbiol ; 133(5): 2790-2801, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35870153

ABSTRACT

AIMS: Phenazines, such as phenazine-1-carboxylic acid (PCA), phenazine-1-carboxamide (PCN), 2-hydroxyphenazine-1-carboxylic acid (2-OH-PCA), 2-hydroxyphenazine (2-OH-PHZ), are a class of secondary metabolites secreted by plant-beneficial Pseudomonas. Ps. chlororaphis GP72 utilizes glycerol to synthesize PCA, 2-OH-PCA and 2-OH-PHZ, exhibiting broad-spectrum antifungal activity. Previous studies showed that the addition of dithiothreitol (DTT) could increase the phenazines production in Ps. chlororaphis GP72AN. However, the mechanism of high yield of phenazine by adding DTT is still unclear. METHODS AND RESULTS: In this study, untargeted and targeted metabolomic analysis were adopted to determine the content of metabolites. The results showed that the addition of DTT to GP72AN affected the content of metabolites of central carbon metabolism, shikimate pathway and phenazine competitive pathway. Transcriptome analysis was conducted to investigate the changed cellular process, and the result indicated that the addition of DTT affected the expression of genes involved in phenazine biosynthetic cluster and genes involved in phenazine competitive pathway, driving more carbon flux into phenazine biosynthetic pathway. Furthermore, genes involved in antioxidative stress, phosphate transport system and mexGHI-opmD efflux pump were also affected by adding DTT. CONCLUSION: This study demonstrated that the addition of DTT altered the expression of genes related to phenazine biosynthesis, resulting in the change of metabolites involved in central carbon metabolism, shikimate pathway and phenazine competitive pathway. SIGNIFICANCE AND IMPACT OF THE STUDY: This work expands the understanding of high yield of phenazine by the addition of DTT and provides several targets for increasing phenazine production.


Subject(s)
Pseudomonas chlororaphis , Pseudomonas chlororaphis/genetics , Pseudomonas chlororaphis/metabolism , Glycerol/metabolism , Antifungal Agents/metabolism , Dithiothreitol/metabolism , Transcriptome , Phenazines/metabolism , Metabolomics , Gene Expression Profiling , Carbon/metabolism , Phosphates/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
5.
Microb Biotechnol ; 15(9): 2324-2336, 2022 09.
Article in English | MEDLINE | ID: mdl-35575623

ABSTRACT

Pseudomonas chlororaphis is a non-pathogenic, plant growth-promoting rhizobacterium that secretes phenazine compounds with broad-spectrum antibiotic activity. Currently available genome-editing methods for P. chlororaphis are based on homologous recombination (HR)-dependent allelic exchange, which requires both exogenous DNA repair proteins (e.g. λ-Red-like systems) and endogenous functions (e.g. RecA) for HR and/or providing donor DNA templates. In general, these procedures are time-consuming, laborious and inefficient. Here, we established a CRISPR-assisted base-editing (CBE) system based on the fusion of a rat cytidine deaminase (rAPOBEC1), enhanced-specificity Cas9 nickase (eSpCas9ppD10A ) and uracil DNA glycosylase inhibitor (UGI). This CBE system converts C:G into T:A without DNA strands breaks or any donor DNA template. By engineering a premature STOP codon in target spacers, the hmgA and phzO genes of P. chlororaphis were successfully interrupted at high efficiency. The phzO-inactivated strain obtained by base editing exhibited identical phenotypic features as compared with a mutant obtained by HR-based allelic exchange. The use of this CBE system was extended to other P. chlororaphis strains (subspecies LX24 and HT66) and also to P. fluorescens 10586, with an equally high editing efficiency. The wide applicability of this CBE method will accelerate bacterial physiology research and metabolic engineering of non-traditional bacterial hosts.


Subject(s)
CRISPR-Cas Systems , Pseudomonas chlororaphis , Animals , DNA/genetics , DNA/metabolism , Deoxyribonuclease I/genetics , Deoxyribonuclease I/metabolism , Gene Editing/methods , Genome, Bacterial , Pseudomonas chlororaphis/genetics , Pseudomonas chlororaphis/metabolism , Rats
6.
Appl Microbiol Biotechnol ; 105(24): 9309-9319, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34791515

ABSTRACT

Mupirocin, a polyketide antibiotic produced by Pseudomonas fluorescens, is used as a topical antimicrobial treatment to cure various skin infections. Quorum sensing system plays an important role in regulation of mupirocin biosynthesis in P. fluorescens NCIMB 10586. In Pseudomonas, the RpeA/RpeB two-component signal transduction (TCST) system regulates quorum sensing system. However, the influences of the RpeA/RpeB TCST system on mupirocin production or other cell activities have not been studied. In this work, the homologous genes of rpeA and rpeB in P. fluorescens NCIMB 10586 were identified and inactivated in the chromosome, respectively. The deletion of rpeA reduced the mupirocin production from 160 in the wild-type to 21.3 mg/L along with slightly decreased cell growth, while no significant effected on mupirocin production in the rpeB mutant. Next, it was found that the RpeA/RpeB TCST system regulated the biosynthesis of mupirocin by modulating the quorum sensing system. Furthermore, untargeted metabolomics analysis was employed to detect the influences of RpeA on other cell activities modulated by quorum sensing system. Combined with quantitative real-time PCR, the results demonstrated that RpeA also regulated other cell activities including central carbon, amino acids, fatty acids, and purine metabolism. Overall, this study expands the current understanding of the RpeA/RpeB TCST system and provides several targets for increasing yields of mupirocin. KEY POINTS: • In P. fluorescens, the RpeA/RpeB TCST system regulates the biosynthesis of mupirocin. • RpeA modulates the cell activities through effecting the central carbon metabolism.


Subject(s)
Mupirocin , Pseudomonas fluorescens , Anti-Bacterial Agents , Bacterial Proteins/genetics , Pseudomonas , Pseudomonas fluorescens/genetics , Quorum Sensing
7.
J Agric Food Chem ; 69(16): 4778-4784, 2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33848158

ABSTRACT

The take-all disease of wheat is one of the most serious diseases in the field of food security in the world. There is no effective biological pesticide to prevent the take-all disease of wheat. 2-Hydroxyphenazine (2-OH-PHZ) was reported to possess a better inhibitory effect on the take-all disease of wheat than phenazine-1-carboxylic acid, which was registered as "Shenqinmycin" in China in 2011. The aim of this study was to construct a 2-OH-PHZ high-producing strain by strain screening, genome sequencing, genetic engineering, and fermentation optimization. First, the metabolites of the previously screened new phenazine-producing Pseudomonas sp. strain were identified, and the taxonomic status of the new Pseudomonas sp. strain was confirmed through 16S rRNA and matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS). Then, the new Pseudomonas sp. strain was named Pseudomonas chlororaphis subsp. aurantiaca LX24, which is a new subspecies of P. chlororaphis that can synthesize 2-OH-PHZ. Next, the draft genome of strain LX24 was determined, and clusters of orthologous group (COG) analysis, KEGG analysis, and gene ontology (GO) analysis of strain LX24 were performed. Furthermore, the production of 2-OH-PHZ increased to 351.7 from 158.6 mg/L by deletion of the phenazine synthesis negative regulatory genes rpeA and rsmE in strain LX24. Finally, the 2-OH-PHZ production of strain LX24 reached 677.1 mg/L after fermentation optimization, which is the highest production through microbial fermentation reported to date. This work provides a reference for the efficient production of other pesticides and antibiotics.


Subject(s)
Pseudomonas chlororaphis , Bacterial Proteins/genetics , China , Phenazines , Pseudomonas , Pseudomonas chlororaphis/genetics , RNA, Ribosomal, 16S
8.
World J Microbiol Biotechnol ; 36(3): 49, 2020 Mar 10.
Article in English | MEDLINE | ID: mdl-32157439

ABSTRACT

Glycerol is a by-product of biodiesel, and it has a great application prospect to be transformed to synthesize high value-added compounds. Pseudomonas chlororaphis GP72 isolated from the green pepper rhizosphere is a plant growth promoting rhizobacteria that can utilize amount of glycerol to synthesize phenazine-1-carboxylic acid (PCA). PCA has been commercially registered as "Shenqinmycin" in China due to its characteristics of preventing pepper blight and rice sheath blight. The aim of this study was to engineer glycerol utilization pathway in P. chlororaphis GP72. First, the two genes glpF and glpK from the glycerol metabolism pathway were overexpressed in GP72ANO separately. Then, the two genes were co-expressed in GP72ANO, improving PCA production from 729.4 mg/L to 993.4 mg/L at 36 h. Moreover, the shunt pathway was blocked to enhance glycerol utilization, resulting in 1493.3 mg/L PCA production. Additionally, we confirmed the inhibition of glpR on glycerol metabolism pathway in P. chlororaphis GP72. This study provides a good example for improving the utilization of glycerol to synthesize high value-added compounds in Pseudomonas.


Subject(s)
Glycerol/metabolism , Metabolic Engineering/methods , Pseudomonas chlororaphis/genetics , Pseudomonas chlororaphis/metabolism , Aquaporins/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Capsicum/microbiology , China , DNA, Bacterial/genetics , DNA, Bacterial/isolation & purification , Gene Expression Regulation, Bacterial , Gene Knockout Techniques , Glycerolphosphate Dehydrogenase/genetics , Metabolic Networks and Pathways/genetics , Phenazines/metabolism , Repressor Proteins/genetics , Rhizosphere
9.
J Agric Food Chem ; 68(2): 561-566, 2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31840510

ABSTRACT

2-Hydroxyphenazine (2-OH-PHZ) is an effective biocontrol antibiotic secreted by Pseudomonas chlororaphis GP72AN and is transformed from phenazine-1-carboxylic acid (PCA). PCA is the main component of the recently registered biopesticide "Shenqinmycin". Previous research showed that 2-OH-PHZ was better in controlling wheat take-all disease than PCA; however, 2-OH-PHZ production was low under natural conditions. Herein, we confirmed that PCA induced reactive oxygen species in its host P. chlororaphis GP72AN and that the addition of DTT improved PCA production by 1.8-fold, whereas the supplementation of K3[Fe(CN)6] and H2O2 increased the conversion rate of PCA to 2-OH-PHZ. Finally, a two-stage fermentation strategy combining the addition of DTT at 12 h and H2O2 at 24 h enhanced 2-OH-PHZ production. Taken together, the two-stage fermentation strategy was designed to enhance 2-OH-PHZ production for the first time, and it provided a valuable reference for the fermentation of other antibiotics.


Subject(s)
Anti-Bacterial Agents/biosynthesis , Glycerol/metabolism , Industrial Microbiology/methods , Pseudomonas chlororaphis/metabolism , Bacterial Proteins/metabolism , Culture Media/chemistry , Culture Media/metabolism , Fermentation , Hydrogen Peroxide/metabolism , Phenazines/metabolism , Reactive Oxygen Species/metabolism
10.
Biotechnol Bioeng ; 116(11): 3072-3083, 2019 11.
Article in English | MEDLINE | ID: mdl-31317529

ABSTRACT

Cinnabarinic acid is a valuable phenoxazinone that has broad applications in the pharmaceutical, chemical, and dyeing industries. However, few studies have investigated the production of cinnabarinic acid or its derivatives using genetically engineered microorganisms. Herein, an efficient synthetic pathway of cinnabarinic acid was designed and constructed in Pseudomonas chlororaphis GP72 for the first tim, which was more straightforward and robust than the known eukaryotic biosynthetic pathways. First, we screened and identified trans-2,3-dihydro-3-hydroxyanthranilic acid (DHHA) dehydrogenases from Escherichia coli MG1655 (encoded by entA), Streptomyces sp. NRRL12068 (encoded by bomO) and Streptomyces chartreusis NRRL3882 (encoded by calB3 ) based on the structural similarity of the substrate and product, and the DHHA dehydrogenase encoded by calB3 was selected for the synthesis of cinnabarinic acid due to its high DHHA conversion rate. Subsequently, cinnabarinic acid was synthesized by the expression of the DHHA dehydrogenase CalB3 and the phenoxazinone synthase CotA in the DHHA-producing strain P. chlororaphis GP72, resulting in a cinnabarinic acid titer of 20.3 mg/L at 48 hr. Further fermentation optimization by the addition of Cu2+ , H2 O2 , and with adding glycerol increased cinnabarinic acid titer to 136.2 mg/L in shake flasks. The results indicate that P. chlororaphis GP72 may be engineered as a microbial cell factory to produce cinnabarinic acid or its derivatives from renewable bioresources.


Subject(s)
Bacterial Proteins , Biosynthetic Pathways , Gene Expression Regulation, Bacterial , Metabolic Engineering , Oxazines/metabolism , Pseudomonas chlororaphis , Bacterial Proteins/biosynthesis , Bacterial Proteins/genetics , Pseudomonas chlororaphis/genetics , Pseudomonas chlororaphis/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...