Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Netw Neurosci ; 8(2): 395-417, 2024.
Article in English | MEDLINE | ID: mdl-38952809

ABSTRACT

Functional brain networks have preserved architectures in rest and task; nevertheless, previous work consistently demonstrated task-related brain functional reorganization. Efficient rest-to-task functional network reconfiguration is associated with better cognition in young adults. However, aging and cognitive load effects, as well as contributions of intra- and internetwork reconfiguration, remain unclear. We assessed age-related and load-dependent effects on global and network-specific functional reconfiguration between rest and a spatial working memory (SWM) task in young and older adults, then investigated associations between functional reconfiguration and SWM across loads and age groups. Overall, global and network-level functional reconfiguration between rest and task increased with age and load. Importantly, more efficient functional reconfiguration associated with better performance across age groups. However, older adults relied more on internetwork reconfiguration of higher cognitive and task-relevant networks. These reflect the consistent importance of efficient network updating despite recruitment of additional functional networks to offset reduction in neural resources and a change in brain functional topology in older adults. Our findings generalize the association between efficient functional reconfiguration and cognition to aging and demonstrate distinct brain functional reconfiguration patterns associated with SWM in aging, highlighting the importance of combining rest and task measures to study aging cognition.


Brain networks identified by functional connectivity (FC) have preserved architectures from rest to task and across task demands. Higher similarity, implying more efficient network reconfiguration, was associated with better cognition and task performance in young adults. To examine how it may be influenced by aging, we compared whole-brain and network-level FC similarities between resting-state and spatial working memory fMRI in young and older adults. At whole-brain level and higher order cognitive networks, older adults evidenced less efficient network reconfiguration from rest to task than young adults. Importantly, more efficient reconfiguration was associated with better accuracy. This relationship relied more on internetwork connections in older adults. Despite reduced neural resources compared to young, maintaining efficient network updating still contributes to better cognition at older age.

2.
Transl Psychiatry ; 13(1): 345, 2023 Nov 11.
Article in English | MEDLINE | ID: mdl-37951943

ABSTRACT

Mindfulness-based interventions are showing increasing promise as a treatment for psychological disorders, with improvements in cognition and emotion regulation after intervention. Understanding the changes in functional brain activity and neural plasticity that underlie these benefits from mindfulness interventions is thus of interest in current neuroimaging research. Previous studies have found functional brain changes during resting and task states to be associated with mindfulness both cross-sectionally and longitudinally, particularly in the executive control, default mode and salience networks. However, limited research has combined information from rest and task to study mindfulness-related functional changes in the brain, particularly in the context of intervention studies with active controls. Recent work has found that the reconfiguration efficiency of brain activity patterns between rest and task states is behaviorally relevant in healthy young adults. Thus, we applied this measure to investigate how mindfulness intervention changed functional reconfiguration between rest and a breath-counting task in elderly participants with self-reported sleep difficulties. Improving on previous longitudinal designs, we compared the intervention effects of a mindfulness-based therapy to an active control (sleep hygiene) intervention. We found that mindfulness intervention improved self-reported mindfulness measures and brain functional reconfiguration efficiency in the executive control, default mode and salience networks, though the brain and behavioral changes were not associated with each other. Our findings suggest that neuroplasticity may be induced through regular mindfulness practice, thus bringing the intrinsic functional configuration in participants' brains closer to a state required for mindful awareness.


Subject(s)
Mindfulness , Young Adult , Humans , Aged , Mindfulness/methods , Brain , Cognition/physiology , Executive Function/physiology , Brain Mapping/methods , Magnetic Resonance Imaging
3.
Oncotarget ; 8(44): 77567-77585, 2017 Sep 29.
Article in English | MEDLINE | ID: mdl-29100409

ABSTRACT

Many tyrosine kinase-driven cancers, including chronic myeloid leukemia (CML), are characterized by high response rates to specific tyrosine kinase inhibitors (TKIs) like imatinib. In East Asians, primary imatinib resistance is caused by a deletion polymorphism in Intron 2 of the BIM gene, whose product is required for TKI-induced apoptosis. The deletion biases BIM splicing from exon 4 to exon 3, generating splice isoforms lacking the exon 4-encoded pro-apoptotic BH3 domain, which impairs the ability of TKIs to induce apoptosis. We sought to identify splice-switching antisense oligonucleotides (ASOs) that block exon 3 but enhance exon 4 splicing, and thereby resensitize BIM deletion-containing cancers to imatinib. First, we mapped multiple cis-acting splicing elements around BIM exon 3 by minigene mutations, and found an exonic splicing enhancer acting via SRSF1. Second, by a systematic ASO walk, we isolated ASOs that corrected the aberrant BIM splicing. Eight of 67 ASOs increased exon 4 levels in BIM deletion-containing cells, and restored imatinib-induced apoptosis and TKI sensitivity. This proof-of-principle study proves that resistant CML cells by BIM deletion polymorphism can be resensitized to imatinib via splice-switching BIM ASOs. Future optimizations might yield a therapeutic ASO as precision-medicine adjuvant treatment for BIM-polymorphism-associated TKI-resistant CML and other cancers.

SELECTION OF CITATIONS
SEARCH DETAIL
...