Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceuticals (Basel) ; 16(6)2023 May 30.
Article in English | MEDLINE | ID: mdl-37375758

ABSTRACT

Over the past decades, peptides and proteins have been increasingly important in the treatment of various human diseases and conditions owing to their specificity, potency, and minimized off-target toxicity. However, the existence of the practically impermeable blood brain barrier (BBB) limits the entry of macromolecular therapeutics into the central nervous systems (CNS). Consequently, clinical translation of peptide/protein therapeutics for the treatment of CNS diseases has been limited. Over the past decades, developing effective delivery strategies for peptides and proteins has gained extensive attention, in particular with localized delivery strategies, due to the fact that they are capable of circumventing the physiological barrier to directly introduce macromolecular therapeutics into the CNS to improve therapeutic effects and reduce systemic side effects. Here, we discuss various local administration and formulation strategies that have shown successes in the treatment of CNS diseases using peptide/protein therapeutics. Lastly, we discuss challenges and future perspectives of these approaches.

2.
Nat Commun ; 14(1): 118, 2023 01 09.
Article in English | MEDLINE | ID: mdl-36624100

ABSTRACT

Microglia are central to pathogenesis in many neurological conditions. Drugs targeting colony-stimulating factor-1 receptor (CSF1R) to block microglial proliferation in preclinical disease models have shown mixed outcomes, thus the therapeutic potential of this approach remains unclear. Here, we show that CSF1R inhibitors given by multiple dosing paradigms in the Tg2541 tauopathy mouse model cause a sex-independent reduction in pathogenic tau and reversion of non-microglial gene expression patterns toward a normal wild type signature. Despite greater drug exposure in male mice, only female mice have functional rescue and extended survival. A dose-dependent upregulation of immediate early genes and neurotransmitter dysregulation are observed in the brains of male mice only, indicating that excitotoxicity may preclude functional benefits. Drug-resilient microglia in male mice exhibit morphological and gene expression patterns consistent with increased neuroinflammatory signaling, suggesting a mechanistic basis for sex-specific excitotoxicity. Complete microglial ablation is neither required nor desirable for neuroprotection and therapeutics targeting microglia must consider sex-dependent effects.


Subject(s)
Receptors, Granulocyte-Macrophage Colony-Stimulating Factor , Tauopathies , Animals , Female , Male , Mice , Brain/metabolism , Disease Models, Animal , Microglia/metabolism , Phenotype , Receptors, Colony-Stimulating Factor/genetics , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/antagonists & inhibitors , Tauopathies/metabolism
3.
Pharmaceutics ; 13(9)2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34575410

ABSTRACT

Uveal melanoma (UM) is the most common primary intraocular tumor in adults with high mortality. In order to improve prognosis and survival of UM patients, it is critical to inhibit tumor progression and metastasis as early as possible after the initial presentation/diagnosis of the disease. Sustained local delivery of antitumor therapeutics in the posterior region can potentially achieve long-term UM inhibition, improve target therapeutic delivery to the posterior segments, as well as reduce injection frequency and hence improved patient compliance. To address the highly unmet medical need in UM therapy, a bioinspired in situ gelling hydrogel system composed of naturally occurring biopolymers collagen and hyaluronic acid was developed in the present research. Curcumin with anti-cancer progression, anti-metastasis effects, and good ocular safety was chosen as the model therapeutic. The developed in situ gelling delivery system gelled at 37 °C within two minutes and demonstrated excellent biocompatibility and slow degradation. The curcumin-loaded nanoparticle/hydrogel composite was able to sustain release payload for up to four weeks. The optimized nanoparticle/hydrogel composite showed effective inhibition of human UM cell proliferation. This novel nanoparticle/in situ hydrogel composite demonstrated a great potential for the treatment of the rare and devastating intraocular cancer.

4.
Sci Transl Med ; 11(490)2019 05 01.
Article in English | MEDLINE | ID: mdl-31043574

ABSTRACT

The hallmarks of Alzheimer's disease (AD) are the accumulation of Aß plaques and neurofibrillary tangles composed of hyperphosphorylated tau. We developed sensitive cellular assays using human embryonic kidney-293T cells to quantify intracellular self-propagating conformers of Aß in brain samples from patients with AD or other neurodegenerative diseases. Postmortem brain tissue from patients with AD had measurable amounts of pathological Aß conformers. Individuals over 80 years of age had the lowest amounts of prion-like Aß and phosphorylated tau. Unexpectedly, the longevity-dependent decrease in self-propagating tau conformers occurred in spite of increasing amounts of total insoluble tau. When corrected for the abundance of insoluble tau, the ability of postmortem AD brain homogenates to induce misfolded tau in the cellular assays showed an exponential decrease with longevity, with a half-life of about one decade over the age range of 37 to 99 years. Thus, our findings demonstrate an inverse correlation between longevity in patients with AD and the abundance of pathological tau conformers. Our cellular assays can be applied to patient selection for clinical studies and the development of new drugs and diagnostics for AD.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Brain/metabolism , Longevity , Prions/metabolism , tau Proteins/metabolism , Adult , Aged , Aged, 80 and over , Aging , Alzheimer Disease/complications , Animals , Apolipoprotein E4/genetics , Disease Models, Animal , Genotype , Gliosis/complications , Gliosis/pathology , HEK293 Cells , Humans , Mice, Transgenic , Middle Aged , Phenotype , Phosphorylation , Plaque, Amyloid/complications , Plaque, Amyloid/pathology , Protein Isoforms/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...