Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Environ Manage ; 352: 119982, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38218165

ABSTRACT

Electricity consumption and anaerobic reactions cause direct and indirect greenhouse gas (GHG) emissions within domestic sewage treatment systems (DSTSs). GHG emissions in DSTSs were influenced by the sewage quantity and the efficacy of treatment technologies. To address combined effects of these variables, this study presented an approach for identifying pathways for GHG mitigation within the DSTSs of cities under climate change and socio-economic development, through combining life cycle analysis (LCA) and the Hierarchical Archimedean copula (HAC) methods. The approach was innovative in the following aspects: 1) quantifying the GHG emissions of the DSTSs; 2) identifying the correlations among temperature changes, socioeconomic development, and domestic sewage quantity, and 3) predicting the future fluctuations in GHG emissions from the DSTSs. The effectiveness of the proposed approach was validated through its application to an urban agglomeration in the Pearl River Delta (PRD), China. To identify the potentials of GHG mitigation in the DSTSs, two pathways (i.e., general and optimized) were proposed according to the different technical choices for establishing facilities from 2021 to 2030. The results indicated that GHG emissions from the DSTS in the PRD were [3.01, 4.96] Mt CO2eq in 2021, with substantial contributions from Shenzhen and Guangzhou. Moreover, GHG emissions from the sewage treatment facilities based on Anaerobic-Anoxic-Axic (AAO) technology were higher than those based on other technologies. Under the optimized pathway, GHG emissions, contributed by the technologies of Continuous Cycle Aeration System (CASS) and Oxidation Ditch (OD), were the lowest. Through the results of correlation analysis, the impact of socioeconomic development on domestic sewage quantities was more significant than that of climate change. Domestic sewage quantities in the cities of the PRD would increase by 4.10%-28.38%, 17.14%-26.01%, and 18.15%-26.50% from 2022 to 2030 under three Representative Concentration Pathways (RCPs) 2.6, 4.5, and 8.5. These findings demonstrated that the capacities of domestic sewage treatment facilities in most cities of the PRD should be substantially improved from 0.12 to 2.99 times between 2022 and 2030. Under the optimized pathway, the future GHG emissions of the CASS method would be the lowest, followed by the OD method.


Subject(s)
Greenhouse Gases , Penicillanic Acid/analogs & derivatives , Sewage , Greenhouse Effect , Cities
2.
J Environ Manage ; 320: 115821, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36056481

ABSTRACT

The urbanization process has seen an accelerated increase in recent decades, leading to urban runoff pollution becoming more prominent. However, uncertainty of the pollution output and complexity of management systems have made controlling urban runoff pollution challenging. Therefore, it is necessary to propose advanced modeling methods for these challenges. This research presents an integrated urban runoff pollution management (IURPM) model for optimal configuration of low impact development (LID) practices under multiple uncertainties. The IURPM model combines the hybrid land-use prediction and improved pollution estimation models with interval parameter, stochastic parameter, and multi-objective programming. The proposed IURPM model can not only predict the output characteristics, but also provide optimal configuration schemes for the LID practices in the management of urban runoff pollution under multiple scenarios. In addition, uncertainties expressed as discrete intervals and probability density function in the management systems can be effectively addressed. A case study of the IURPM model was conducted in Dongguan City, South China. Results show that considerable amounts of urban runoff pollutants would export from Dongguan City by 2025. The export loads and pollution output flux per unit area would have significant spatial heterogeneity. The results further indicate that population size, gross domestic product, and regional area size are expected to play important roles in the pollution export, while impervious surface coverage and population density would likely have great influences on the output flux of urban runoff pollution. Based on the model findings, multiple LID practices should be adopted in Dongguan City to reduce the urban runoff pollution loads. Using the IURPM model, multiple LID implementation schemes can be obtained under different pollution reduction scenarios and significance levels, that can provide decision-making support for urban water environmental management, considering variations in the policymaker's decision-making preferences. This study demonstrates that the IURPM model can be applied to the optimal configuration of LID practices for the management of urban runoff pollution under uncertainty.


Subject(s)
Models, Theoretical , Rain , China , Cities , Environmental Monitoring , Uncertainty , Urbanization , Water Movements
3.
Sci Total Environ ; 841: 156687, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35716736

ABSTRACT

The role of urban green space (UGS) in mitigating the urban heat island (UHI) effect has been demonstrated in a growing body of literature. However, the potential influence of the spatial equity of UGS distribution on the UHI effect has largely been overlooked. The present study aims to identify this potential influence using the spatial equity of UGS and the land surface temperature (LST) as measures of UGS spatial distribution and UHIs, respectively. A comprehensive spatial distribution map of UGS was generated by combining the UGS coverage fraction data within urban impervious pixels and the green cover data outside urban impervious pixels. Then, the spatial equity of UGS distribution across all urban impervious pixels was determined using the Gini coefficient. In addition, an LST map was derived using the thermal infrared spectral bands of Landsat 8 OLI/TIRS products. A case study of Dongguan, a highly urbanized city in China, showed that (1) the distribution of both UGS and LSTs were spatially aggregated in all the towns of the city, (2) the LST of urban impervious pixels was negatively correlated with the area of surrounding UGS, and (3) the Gini coefficient of UGS was positively correlated with the proportion of hot and cool areas, but negatively correlated with the proportion of medium-hot and medium-cool areas. These findings indicate that increasing the amount of UGS is beneficial to the reduction of urban average LSTs, while promoting the spatial equity of UGS distribution is conducive to reducing the spatial aggregation of LSTs within urban areas, thereby improving the overall urban thermal environment. Therefore, as a nature-based solution, promoting the spatial equity of UGS distribution could enhance the overall cooling effect of UGS more effectively at the city scale, and thus further underpin the sustainable development of the urban environment.


Subject(s)
Hot Temperature , Parks, Recreational , Cities , Cold Temperature , Environmental Monitoring
4.
J Environ Manage ; 317: 115318, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35623131

ABSTRACT

Water scarcity tends to be aggravated by increase in water demand with the trend of socio-economic development. Thus, non-stationary characteristics of water demand should be identified in water resources allocation (WRA) to alleviate the potential influences from water shortages. In this study, a Copula-based interval linear programming model was established for regional WRA. Through combining correlation analysis and an interval linear programming model, this model can: 1) identify interactions between water demand and socio-economic development levels based on Copula functions, 2) explore variations in water shortage with consideration of multiple risk tolerance levels of decision-makers based on Copula sampling, and 3) obtain desired strategies for WRA through an interval linear programming model. Also, Dalian City in China was selected as a case study area to verify the effectiveness of the model for WRA to five water users (i.e., agricultural sector, industrial sector, public service sector, domestic residents, and ecological environment). Considering multiple tolerance levels of decision-makers to water shortage risk, three scenarios (i.e., S1 to S3), indicating 20%, 40%, and 60% of their low, medium, and high tolerance levels, were proposed. The results showed that the correlation between the amount of water demand and indicators of socio-economic development can be described by Clayton and Gaussian Copula functions. The total water supply of Dalian in 2030 would increase by 2.06%-2.65%, compared with the one in 2025. The allocation of water resources across districts was influenced by varied water demand, energy consumption, and risk tolerance levels. Compared with the amount of water allocation in 2025, the contribution of transferred water sources would increase by 6.71% and 7.04% under S1 and S2 in 2030, respectively, and decrease by 14.31% under S3. With the increase of risk tolerance levels of decision-makers, the amount of water supply in Dalian City would gradually decrease.


Subject(s)
Water Resources , Water , China , Models, Theoretical , Programming, Linear , Resource Allocation , Uncertainty , Water Supply
5.
J Environ Manage ; 306: 114432, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35026718

ABSTRACT

Socioeconomic development, leading to significant changes in land-use patterns, has further influenced the output of regional nonpoint-source (NPS) pollution. Multiple uncertainties exist in the processes of land-use changes and NPS pollution export. These uncertainties can deeply affect the management of regional land-use patterns and control of NPS pollution. In this research, an integrated land-use prediction and optimization (ILUPO) model based on system dynamics, export coefficient, interval linear programming, and fuzzy parameter programming models was proposed. The ILUPO model can provide future land-use patterns and NPS pollution loads, and also help optimize the patterns under multiple pollution reduction scenarios. Interval and fuzzy uncertainties in the processes of land-use changes and NPS pollution output can be effectively addressed. The developed model was applied to a water source area in the central part of northern Guangdong Province in South China. For the prediction period 2020-2030 under the high-speed development scenario, results show that cropland area would decrease, while grassland and waterbody areas would increase. In contrast, these three types of land-use would show opposite variation trends under the low-speed development scenario. Construction land area would decrease, while forestland area would increase under both the low-speed and high-speed development scenarios. Variation of the predicted land-use patterns would lead to an increase of total nitrogen loads under each of the scenario, while the total phosphorus loads would show relatively complex variation trends. Regional land-use patterns should be further optimized to mitigate NPS pollution. However, the pollution loads in the study area cannot be reduced by >5% through land-use adjustment. Because cropland would still be the critical source of NPS pollution after optimization, strictly controlling the areas of cropland would be important for the management of such pollution in the research area. In addition, certain areas of grassland and waterbody would need to be converted into cropland and construction land to balance the economic benefit of the system and NPS pollution control. Multiple results obtained from the model under different scenarios of pollution reduction targets and α-cut levels can provide decision-making supports for the local policy makers. The developed ILUPO model can yield insights useful for the planning and adjustment of regional land-use patterns while considering NPS pollution control under conditions of uncertainty.


Subject(s)
Non-Point Source Pollution , Water Pollutants, Chemical , China , Environmental Monitoring , Models, Theoretical , Nitrogen/analysis , Phosphorus/analysis , Rivers , Uncertainty , Water Pollutants, Chemical/analysis
6.
Sci Total Environ ; 758: 143659, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33279201

ABSTRACT

Management of nonpoint source (NPS) pollution is highly important in watershed water environmental and ecological security. However, the many complexities and uncertainties that exist in the processes of export and management of NPS pollution exert substantial influences on the reliability of multiple management practices. This study developed an inexact multiobjective possibilistic mean-variance mixed-integer programming (IMPMMP) model for NPS pollution management through optimization of watershed land use pattern and livestock production structure. By coupling interval parameter programming, mixed-integer programming, multiobjective programming, and an export coefficient model within a general possibilistic mean-variance model framework, the IMPMMP model deals effectively with system uncertainties and complexities. Moreover, the risk of exceeding criteria (REC) in NPS pollution management systems can be considered. The proposed IMPMMP model was applied to a real-world case study in the Xinfengjiang Reservoir watershed in South China. Results showed that the preference of decision makers regarding land use adjustment plays a decisive role in determining model feasibility. The area provided for each land use type that could be adjusted has to reach a certain threshold to achieve the goals of reduced pollution load and REC control. The NPS pollution loads after optimization would be exported primarily from different land uses and the human population. Compared with NPS nitrogen pollution management, it is more difficult to reduce the NPS phosphorus load and to manage the corresponding REC through adjustment of the land use pattern and livestock production structure. Moreover, it is difficult to simultaneously reduce the NPS nitrogen and phosphorus pollution loads and REC in each subbasin. The model, which can provide policy makers with a series of schemes for optimization of land use pattern and livestock production structure, has satisfactory applicability and could be used for watershed NPS pollution management.

7.
Nat Food ; 1(9): 572-582, 2020 Sep.
Article in English | MEDLINE | ID: mdl-37128013

ABSTRACT

Meeting increasing food demands in an environmentally sustainable manner is a worldwide challenge. Applying life cycle analysis to different scenarios, we show that a 47-99% reduction in phosphorus emissions, nitrogen emissions, greenhouse gas emissions, bluewater consumption and cropland use is needed for China's food production in 2030 to be within national and provincial environmental boundaries. Basic strategies like improving food production efficiency, optimizing fertilizer application, reducing food loss and waste and shifting diets are currently insufficient to keep environmental impacts within national boundaries-particularly those concerning nitrogen. However, intensifying these strategies and reallocating food production from the northern to the southern provinces could keep environmental impacts within both national and provincial boundaries. We conclude that the environmental sustainability of China's food production requires radical and coordinated action by diverse stakeholders.

8.
J Environ Manage ; 245: 418-431, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31163379

ABSTRACT

A simulation-based interval stochastic bi-level multi-objective programming (SISBLMOP) model was proposed in this research, through integrating the global nutrient export from watersheds model, interval parameter programming and stochastic chance-constrained programming into a general bi-level multi-objective programming framework. The SISBLMOP model can handle multiple uncertainties expressed as discrete intervals and probability density functions in both the simulation and optimization processes. System complexities, including the hierarchy structure of upper- and lower-level decision makers, can also be addressed in the model. The proposed model is applied to a real-world case study of the Xinfengjiang Reservoir Watershed in South China to identify the satisfactory implementation levels of multiple best management practices (BMPs). The model results show that multiple BMP schemes for water quality management can be obtained under different upper- and lower-level decision-making and risk-violation scenarios, reflecting the cooperation and gaming results of the two-level decision makers. Consequently, the corresponding BMP implementation costs are acceptable to both the upper- and lower-level decision makers. The model is widely applicable and can be effectively used for water quality management under multiple uncertainties and complexities.


Subject(s)
Decision Making , Water Quality , China , Models, Theoretical , Probability , Uncertainty
9.
Sci Rep ; 7(1): 5055, 2017 07 11.
Article in English | MEDLINE | ID: mdl-28698579

ABSTRACT

To improve the capabilities of conventional methodologies in facilitating industrial water allocation under uncertain conditions, an integrated approach was developed through the combination of operational research, uncertainty analysis, and violation risk analysis methods. The developed approach can (a) address complexities of industrial water resources management (IWRM) systems, (b) facilitate reflections of multiple uncertainties and risks of the system and incorporate them into a general optimization framework, and (c) manage robust actions for industrial productions in consideration of water supply capacity and wastewater discharging control. The developed method was then demonstrated in a water-stressed city (i.e., the City of Dalian), northeastern China. Three scenarios were proposed according to the city's industrial plans. The results indicated that in the planning year of 2020 (a) the production of civilian-used steel ships and machine-made paper & paperboard would reduce significantly, (b) violation risk of chemical oxygen demand (COD) discharge under scenario 1 would be the most prominent, compared with those under scenarios 2 and 3,

10.
Sci Total Environ ; 580: 1351-1362, 2017 Feb 15.
Article in English | MEDLINE | ID: mdl-28017417

ABSTRACT

In this research, an export coefficient based dual inexact two-stage stochastic credibility constrained programming (ECDITSCCP) model was developed through integrating an improved export coefficient model (ECM), interval linear programming (ILP), fuzzy credibility constrained programming (FCCP) and a fuzzy expected value equation within a general two stage programming (TSP) framework. The proposed ECDITSCCP model can effectively address multiple uncertainties expressed as random variables, fuzzy numbers, pure and dual intervals. Also, the model can provide a direct linkage between pre-regulated management policies and the associated economic implications. Moreover, the solutions under multiple credibility levels can be obtained for providing potential decision alternatives for decision makers. The proposed model was then applied to identify optimal land use structures for agricultural NPS pollution mitigation in a representative upstream subcatchment of the Miyun Reservoir watershed in north China. Optimal solutions of the model were successfully obtained, indicating desired land use patterns and nutrient discharge schemes to get a maximum agricultural system benefits under a limited discharge permit. Also, numerous results under multiple credibility levels could provide policy makers with several options, which could help get an appropriate balance between system benefits and pollution mitigation. The developed ECDITSCCP model can be effectively applied to addressing the uncertain information in agricultural systems and shows great applicability to the land use adjustment for agricultural NPS pollution mitigation.

SELECTION OF CITATIONS
SEARCH DETAIL
...