Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biomed Imaging ; 2013: 781603, 2013.
Article in English | MEDLINE | ID: mdl-23476630

ABSTRACT

For the structure mechanics of human body, it is almost impossible to conduct mechanical experiments. Then the finite element model to simulate mechanical experiments has become an effective tool. By introducing several common methods for constructing a 3D model of cranial cavity, this paper carries out systematically the research on the influence law of cranial cavity deformation. By introducing the new concepts and theory to develop the 3D cranial cavity model with the finite-element method, the cranial cavity deformation process with the changing ICP can be made the proper description and reasonable explanation. It can provide reference for getting cranium biomechanical model quickly and efficiently and lay the foundation for further biomechanical experiments and clinical applications.

2.
Environ Sci Technol ; 45(11): 4676-81, 2011 Jun 01.
Article in English | MEDLINE | ID: mdl-21534637

ABSTRACT

To reduce inhalable particle and SO(x) pollution from coal-based urban central heating (UCH), China has been vigorously developing natural gas-based UCH for years. The CO(2) emissions of UCH, having an average annual growth rate of 10.3%, accounted for 4.4% of China's total CO(2) emissions in 2009. This paper analyzes the feasibility of replacing UCH with heat pump heating (HPH) in China's climatic suitable regions and evaluates the corresponding potential for energy saving and emission reduction. Current strategy of replacing coal-based UCH with natural gas-based UCH is expected to decrease CO(2) emissions by 63.5%. However, the CO(2) emissions of HPH are 55.4% less than those of natural gas-based UCH. Replacing coal-based UCH with HPH is capable of decreasing CO(2) emissions by 83.7% and consequently decreases the CO(2) emissions per unit of gross domestic product (GDP) by 4.2% by 2020 compared with 2005 level. This contributes about 10.5% to China's 2020 CO(2) emission reduction target. For controlling environmental pollution and protecting ecological environment better, China should adjust its strategy for CO(2) emission reduction by shifting its attention from replacing coal-based UCH with natural gas-based UCH to popularizing HPH in climatic suitable regions.


Subject(s)
Air Pollution/prevention & control , Cities , Heating/methods , China
3.
J Phys Chem A ; 113(14): 3303-10, 2009 Apr 09.
Article in English | MEDLINE | ID: mdl-19284722

ABSTRACT

Photodissociation of methyl nitrite and n-butyl nitrite at 266 and 355 nm has been investigated in the gas phase at room temperature. OH photoproducts were observed, and their internal state distributions were measured by the one-photon laser-induced fluorescence (LIF) technique. It was found that the nascent OH from the 266 nm photolysis of methyl nitrite was vibrationally cold, and its rotational state distribution conformed to a Boltzmann behavior with a rotational temperature of T(rot) = 2200 +/- 150 K. In contrast, the nascent OH from the 266 nm photolysis of n-butyl nitrite was found to be vibrationally excited, and the measured relative population of v'' = 0:1 was 0.78:0.22. The rotational state distribution of the OH v'' = 1 state conformed to Boltzmann behavior, with a rotational temperature of T(rot) = 1462 +/- 120 K. However, a simple Boltzmann distribution was not found for the OH v'' = 0 state. In the photolysis of n-butyl nitrite at 355 nm, the OH fragment was found to be vibrationally cold and its rotational state distribution showed non-Boltzmann behavior. A photodissociation mechanism involving an intramolecular hydrogen atom transfer process is proposed for the OH product pathway for methyl nitrite, which has been compared with the potential energy surfaces obtained from density functional theory (DFT) calculations. A photodissociation mechanism of n-butyl nitrite is also proposed for the OH product pathway, which differs from that of methyl nitrite due to the effects of the different alkoxy substituents.

4.
J Phys Chem A ; 112(21): 4727-31, 2008 May 29.
Article in English | MEDLINE | ID: mdl-18457374

ABSTRACT

Photodissociation dynamics of benzoic acid monomer (BAM) at different ultraviolet excitation wavelengths (280-295 nm) has been investigated. The nascent OH product state distributions were measured using the laser-induced fluorescence (LIF) technique. The rotational state distributions, the Lambda-doublet-state ratio, and spin-orbit state distributions of the OH fragment were also measured at 280-294 nm. The OH fragments are vibrationally cold, and their rotational state distributions are peaked at J'' = 3.5 at each photolysis wavelength. No LIF signal of OH fragments was observed at 295 nm. The photodissociation threshold is determined to be 102.5-103.9 kcal/mol for OH channel. The dissociative state and mechanism have been discussed for OH produced from the photodissociation of BAM.

5.
Science ; 316(5832): 1723-6, 2007 Jun 22.
Article in English | MEDLINE | ID: mdl-17588925

ABSTRACT

The influence of vibrational excitation on chemical reaction dynamics is well understood in triatomic reactions, but the multiple modes in larger systems complicate efforts toward the validation of a predictive framework. Although recent experiments support selective vibrational enhancements of reactivities, such studies generally do not properly account for the differing amounts of total energy deposited by the excitation of different modes. By precise tuning of translational energies, we measured the relative efficiencies of vibration and translation in promoting the gas-phase reaction of CHD3 with the Cl atom to form HCl and CD3. Unexpectedly, we observed that C-H stretch excitation is no more effective than an equivalent amount of translational energy in raising the overall reaction efficiency; CD3 bend excitation is only slightly more effective. However, vibrational excitation does have a strong impact on product state and angular distributions, with C-H stretch-excited reactants leading to predominantly forward-scattered, vibrationally excited HCl.

SELECTION OF CITATIONS
SEARCH DETAIL
...