Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 642
Filter
1.
BMC Genomics ; 25(1): 525, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38807041

ABSTRACT

BACKGROUND: The Rh blood group system is characterized by its complexity and polymorphism, encompassing 56 different antigens. Accurately predicting the presence of the C antigen using genotyping methods has been challenging. The objective of this study was to evaluate the accuracy of various genotyping methods for predicting the Rh C and to identify a suitable method for the Chinese Han population. METHODS: In total, 317 donors, consisting 223 D+ (including 20 with the Del phenotype) and 94 D- were randomly selected. For RHC genotyping, 48C and 109bp insertion were detected on the Real-time PCR platform and -292 substitution was analyzed via restriction fragment length polymorphism (RFLP). Moreover, the promoter region of the RHCE gene was sequenced to search for other nucleotide substitutions between RHC and RHc. Agreement between prediction methods was evaluated using the Kappa statistic, and comparisons between methods were conducted via the χ2 test. RESULTS: The analysis revealed that the 48C allele, 109bp insertion, a specific pattern observed in RFLP results, and wild-type alleles of seven single nucleotide polymorphisms (SNPs) were in strong agreement with the Rh C, with Kappa coefficients exceeding 0.8. However, there were instances of false positives or false negatives (0.6% false negative rate for 109bp insertion and 5.4-8.2% false positive rates for other methods). The 109bp insertion method exhibited the highest accuracy in predicting the Rh C, at 99.4%, compared to other methods (P values≤0.001). Although no statistical differences were found among other methods for predicting Rh C (P values>0.05), the accuracies in descending order were 48C (94.6%) > rs586178 (92.7%) > rs4649082, rs2375313, rs2281179, rs2072933, rs2072932, and RFLP (92.4%) > rs2072931 (91.8%). CONCLUSIONS: None of the methods examined can independently and accurately predict the Rh C. However, the 109bp insertion test demonstrated the highest accuracy for predicting the Rh C in the Chinese Han population. Utilizing the 109bp insertion test in combination with other methods may enhance the accuracy of Rh C prediction.


Subject(s)
Asian People , Genotyping Techniques , Polymorphism, Single Nucleotide , Rh-Hr Blood-Group System , Humans , Rh-Hr Blood-Group System/genetics , Asian People/genetics , Genotyping Techniques/methods , China , Genotype , Alleles , Polymorphism, Restriction Fragment Length , Gene Frequency , Promoter Regions, Genetic , East Asian People
2.
PLoS One ; 19(5): e0303435, 2024.
Article in English | MEDLINE | ID: mdl-38696504

ABSTRACT

[This corrects the article DOI: 10.1371/journal.pone.0061677.].

3.
mSystems ; : e0121023, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38747603

ABSTRACT

The clustered regularly interspaced short palindromic repeats and their associated proteins (CRISPR-Cas) system widely occurs in prokaryotic organisms to recognize and destruct genetic invaders. Systematic collation and characterization of endogenous CRISPR-Cas systems are conducive to our understanding and potential utilization of this natural genetic machinery. In this study, we screened 39 complete and 692 incomplete genomes of myxobacteria using a combined strategy to dispose of the abridged genome information and revealed at least 19 CRISPR-Cas subtypes, which were distributed with a taxonomic difference and often lost stochastically in intraspecies strains. The cas genes in each subtype were evolutionarily clustered but deeply separated, while most of the CRISPRs were divided into four types based on the motif characteristics of repeat sequences. The spacers recorded in myxobacterial CRISPRs were in high G+C content, matching lots of phages, tiny amounts of plasmids, and, surprisingly, massive organismic genomes. We experimentally demonstrated the immune and self-target immune activities of three endogenous systems in Myxococcus xanthus DK1622 against artificial genetic invaders and revealed the microhomology-mediated end-joining mechanism for the immunity-induced DNA repair but not homology-directed repair. The panoramic view and immune activities imply potential omnipotent immune functions and applications of the endogenous CRISPR-Cas machinery. IMPORTANCE: Serving as an adaptive immune system, clustered regularly interspaced short palindromic repeats and their associated proteins (CRISPR-Cas) empower prokaryotes to fend off the intrusion of external genetic materials. Myxobacteria are a collective of swarming Gram-stain-negative predatory bacteria distinguished by intricate multicellular social behavior. An in-depth analysis of their intrinsic CRISPR-Cas systems is beneficial for our understanding of the survival strategies employed by host cells within their environmental niches. Moreover, the experimental findings presented in this study not only suggest the robust immune functions of CRISPR-Cas in myxobacteria but also their potential applications.

4.
Synth Syst Biotechnol ; 9(3): 540-548, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38680947

ABSTRACT

The chromosomal position effect can significantly affect the transgene expression, which may provide an efficient strategy for the inauguration of alien genes in new hosts, but has been less explored rationally. The bacterium Myxococcus xanthus harbors a large circular high-GC genome, and the position effect in this chassis may result in a thousand-fold expression variation of alien natural products. In this study, we conducted transposon insertion at TA sites on the M. xanthus genome, and used enrichment and dilution indexes to respectively appraise high and low expression potentials of alien genes at insertion sites. The enrichment sites are characteristically distributed along the genome, and the dilution sites are overlapped well with the horizontal transfer genes. We experimentally demonstrated the enrichment sites as high expression integration sites (HEISs), and the dilution sites unsuitable for gene integration expression. This work highlights that HEISs are the plug-and-play sites for efficient expression of integrated genes.

5.
J Womens Health (Larchmt) ; 33(5): 629-638, 2024 May.
Article in English | MEDLINE | ID: mdl-38563830

ABSTRACT

Background: The U.S. Public Health Service and the Institute of Medicine recommend that all women capable of becoming pregnant consume 400 µg of folic acid daily to help prevent neural tube defects (NTDs). Hispanic women are at higher risk of having babies with NTDs than non-Hispanic White women. This study assessed multivitamin (MV) use, a main source of folic acid, among Hispanic women of reproductive age using a survey of solely U.S. Hispanic adults. Materials and Methods: MV use was assessed as part of Porter Novelli's Estilos survey, fielded annually through the largest online U.S. Hispanic panel, Offerwise's QueOpinas. During the study period of 2013-2022, 9,999 surveys were completed; selection was weighted to match the U.S. Census American Community Survey proportions. Log-binomial regression models were applied to estimate MV use trends by age groups, acculturation levels, and pregnancy intention. Results: Among 3,700 Hispanic women of reproductive age, overall no MV use increased from 39.3% in 2013 to 54.7% in 2022 (p for trend <0.0001), especially among Hispanic women aged 18-34 years and those classified as acculturated. Among women planning to get pregnant, daily MV use was 31.1% in 2013 compared with 18.7% in 2020-2022 (p = 0.04). Conclusions: Given the increase in no MV use among Hispanic women of reproductive age, targeted interventions may help reach at-risk groups for NTDs prevention.


Subject(s)
Dietary Supplements , Folic Acid , Hispanic or Latino , Neural Tube Defects , Vitamins , Humans , Female , Hispanic or Latino/statistics & numerical data , Adult , United States/epidemiology , Pregnancy , Vitamins/administration & dosage , Adolescent , Folic Acid/administration & dosage , Young Adult , Neural Tube Defects/prevention & control , Neural Tube Defects/ethnology , Dietary Supplements/statistics & numerical data , Middle Aged , Surveys and Questionnaires , Acculturation
8.
Natl Sci Rev ; 11(5): nwae081, 2024 May.
Article in English | MEDLINE | ID: mdl-38577675

ABSTRACT

Hierarchical self-assembly with long-range order above centimeters widely exists in nature. Mimicking similar structures to promote reaction kinetics of electrochemical energy devices is of immense interest, yet remains challenging. Here, we report a bottom-up self-assembly approach to constructing ordered mesoporous nanofibers with a structure resembling vascular bundles via electrospinning. The synthesis involves self-assembling polystyrene (PS) homopolymer, amphiphilic diblock copolymer, and precursors into supramolecular micelles. Elongational dynamics of viscoelastic micelle solution together with fast solvent evaporation during electrospinning cause simultaneous close packing and uniaxial stretching of micelles, consequently producing polymer nanofibers consisting of oriented micelles. The method is versatile for the fabrication of large-scale ordered mesoporous nanofibers with adjustable pore diameter and various compositions such as carbon, SiO2, TiO2 and WO3. The aligned longitudinal mesopores connected side-by-side by tiny pores offer highly exposed active sites and expedite electron/ion transport. The assembled electrodes deliver outstanding performance for lithium metal batteries.

9.
Food Chem ; 448: 139073, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38574713

ABSTRACT

This study reported for the first time that Ascorbic acid (AA) could appreciably boost the efficiency of Octyl gallate (OG)-mediated photodynamic inactivation (PDI) on Escherichia coli and Staphylococcus aureus in planktonic and biofilm states. The combination of OG (0.075 mM) and AA (200 mM) with 420 nm blue light (212 mW/cm2) led to a >6 Log killing within only 5 min for E. coli and S. aureus and rapid eradication of biofilms. The mechanism of action appears to be the generation of highly toxic hydroxyl radicals (•OH) via photochemical pathways. OG was exposed to BL irradiation to generate various reactive oxygen radicals (ROS) and the addition of AA could transform singlet oxygen (1O2) into hydrogen peroxide (H2O2), which could further react with AA to generate enormous •OH. These ROS jeopardized bacteria and biofilms by nonspecifically attacking various biomacromolecules. Overall, this PDI strategy provides a powerful microbiological decontamination modality to guarantee safe food products.


Subject(s)
Ascorbic Acid , Biofilms , Escherichia coli , Gallic Acid , Gallic Acid/analogs & derivatives , Light , Staphylococcus aureus , Biofilms/drug effects , Ascorbic Acid/pharmacology , Ascorbic Acid/chemistry , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology , Gallic Acid/pharmacology , Gallic Acid/chemistry , Escherichia coli/drug effects , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Microbial Viability/drug effects , Microbial Viability/radiation effects , Reactive Oxygen Species/metabolism , Plankton/drug effects , Plankton/radiation effects , Blue Light
10.
Article in English | MEDLINE | ID: mdl-38522379

ABSTRACT

In this study, we investigate the mortality of the clam Meretrix petechialis facing a vibrio challenge under different temperatures and the underlying molecular mechanisms. Our experiment distinctly revealed that clam mortality was predominantly observed under high temperature, highlighting the critical impact of thermal stress on clam susceptibility to infection. Using RNA-seq, we further compared the global transcriptional response to vibrio in clam gills between high and low temperatures. Compared to other groups, the differentially expressed genes in vibrio-challenged group at high temperature associated with immunity, oxidative stress, and membrane transport. Key results show a weakened immune response in clams at high temperature, especially in the TNF signaling pathway, and a decrease in membrane transport efficiency, notably in SLC proteins. Additionally, high temperature enhanced pro-inflammatory related unsaturated fatty acid metabolism, leading to increased oxidative damage. This was further evidenced by our biochemical assays, which showed significantly higher levels of lipid peroxidation and protein carbonylation in clams at high temperature, indicating heightened oxidative damage. RT-PCR validation of selected DEGs corroborated the RNA-seq findings. Our findings contribute to the understanding of more frequent shellfish mortality in summer, emphasizing the role of temperature in pathogen response, elucidating the molecular mechanisms underlying the synergistic effect of pathogen and high temperature stresses. The key genes identified provide potential targets for resistance-assisted breeding. This research has significant implications for bivalve aquaculture and their physiology, particularly in light of global climate changes affecting marine ecosystems.


Subject(s)
Bivalvia , Transcriptome , Vibrio , Animals , Bivalvia/microbiology , Bivalvia/genetics , Vibrio/physiology , Hot Temperature , Oxidative Stress
11.
Phys Rev Lett ; 132(10): 106601, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38518320

ABSTRACT

It has been theoretically predicted that perturbation of the Berry curvature by electromagnetic fields gives rise to intrinsic nonlinear anomalous Hall effects that are independent of scattering. Two types of nonlinear anomalous Hall effects are expected. The electric nonlinear Hall effect has recently begun to receive attention, while very few studies are concerned with the magneto-nonlinear Hall effect. Here, we combine experiment and first-principles calculations to show that the kagome ferromagnet Fe_{3}Sn_{2} displays such a magneto-nonlinear Hall effect. By systematic field angular and temperature-dependent transport measurements, we unambiguously identify a large anomalous Hall current that is linear in both applied in-plane electric and magnetic fields, utilizing a unique in-plane configuration. We clarify its dominant orbital origin and connect it to the magneto-nonlinear Hall effect. The effect is governed by the intrinsic quantum geometric properties of Bloch electrons. Our results demonstrate the significance of the quantum geometry of electron wave functions from the orbital degree of freedom and open up a new direction in Hall transport effects.

12.
ACS Appl Mater Interfaces ; 16(14): 17432-17441, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38544402

ABSTRACT

Z-scheme heterostructure-based photocatalysts consist of a reduction photocatalyst and an oxidation photocatalyst, enabling them to possess a high capacity for both reduction and oxidation. However, the coupling reaction between photocatalytic H2 generation through water reduction and sterilization using Z-scheme systems has been rarely reported. Herein, 1D W18O49 nanowires embedded over 2D g-C3N4 nanosheets are well-constructed as an integrated Z-scheme heterojunction. Experimental results and density functional theory calculations not only demonstrate the achievement of efficient interfacial charge separation and transport, leading to prolonged lifetime of photogenerated charge carriers, but also directly confirm the mechanism of Z-scheme charge transfer. As expected, the optimized W18O49/g-C3N4 nanostructure exhibits superior photocatalytic sterilization activity against Staphylococcus aureus as well as excellent H2 generation performance under visible-light irradiation (λ ≥ 420 nm). Due to its nontoxic nature, W18O49/g-C3N4 holds great potential in eradicating bacterial infections in living organisms.


Subject(s)
Bacteria , Light , Oxygen Isotopes , Catalysis
14.
Mar Biotechnol (NY) ; 26(2): 389-403, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38483672

ABSTRACT

Bivalve mass mortalities have been reported worldwide, which not only can be explained as a result of pathogen infection, but may reflect changes in environments. Although these episodes were often reported, there was limited information concerning the molecular responses to various stressors leading to summer mortality. In the present work, RNA sequencing (RNA-seq), tandem mass tagging (TMT)-based quantitative proteomics, and 16S rRNA sequencing were used to explore the natural outbreak of summer mortality in the clam Meretrix petechialis. We identified a total of 172 differentially expressed genes (DEGs) and 222 differentially expressed proteins (DEPs) in the diseased group compared to the normal group. The inconsistent expression profiles of immune DEGs/DEPs may be due to the immune dysregulation of the diseased clams. Notably, 11 solute carrier family genes were found among the top 20 down-regulated genes in the diseased group, indicating that weakened transmembrane transport ability might occur in the diseased clams. Integration analysis of transcriptomic and proteomic results showed that many metabolic processes such as "arginine and proline metabolism" and "tyrosine metabolism" were inhibited in the diseased group, suggesting metabolic inhibition. Moreover, 16S rRNA sequencing revealed that the microbial composition of clam hepatopancreas was disordered in the diseased group. The comparison of DEGs expression between the natural summer mortality event and an artificial challenge experiment involving both Vibrio infection and heat stress revealed 9/15 genes showing similar expression trends between the two conditions, suggesting that the summer mortality might be caused by a combination of high temperature and Vibrio infection. These results would deepen our understanding of summer mortality and provide candidate resistance markers for clam resistance breeding.


Subject(s)
Bivalvia , Proteomics , RNA, Ribosomal, 16S , Seasons , Animals , Bivalvia/genetics , Bivalvia/microbiology , Bivalvia/metabolism , RNA, Ribosomal, 16S/genetics , Transcriptome , Gene Expression Profiling , Proteome/genetics , Proteome/metabolism , Hepatopancreas/metabolism , Multiomics
15.
Ying Yong Sheng Tai Xue Bao ; 35(2): 330-338, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38523089

ABSTRACT

Soil aggregates are important for the storage and availability of phosphorus in the soil. However, how forest regeneration types affect phosphorus fractions of soil aggregates remains unclear. In this study, we examined the composition of aggregate particle size, phosphorus fractions, phosphorus sorption capacity index (PSOR), legacy phosphorus index (PLGC) and degree of phosphorus saturation by Mehlich 3 (DPSM3) in bulk soils and soil aggregates of Castanopsis carlesii secondary forest (slight disturbance), C. carlesii human-assisted regeneration forest (moderate disturbance), and Cunninghamia lanceolata plantation (severe disturbance), aiming to explore the impact of forest regeneration types on phosphorus availability and supply potential of bulk soils and soil aggregates. The results showed that forest regeneration types significantly influenced the composition of soil aggregates. The proportion of coarse macroaggregates (>2 mm) in the soil of C. carlesii secondary forest and human-assisted regeneration forest was significantly higher than that in the C. lanceolata plantation, while the proportion of silt and clay fraction (<0.053 mm) showed an opposite trend. The composition of soil aggregates significantly affected the contents of different phosphorus fractions. The contents of soil labile phosphorus fractions (PSOL and PM3) decreased as aggregate particle size decreased. The contents of soil total phosphorus (TP), total organic phosphorus (Po), mode-rately labile phosphorus fractions (PiOH and PoOH), and occluded phosphorus (POCL), as well as PSOR and PLGC, exhibited a trend of decreasing at the beginning and then increasing as particle size decreased. The contents of TP, Po, and PiOH in coarse and silt macroaggregates was significantly higher than that in fine macroaggregates (0.25-2 mm) and microaggregates (0.053-0.25 mm). Forest regeneration types significantly influenced the contents of phosphorus fractions of bulk soils and soil aggregates. The contents of TP, Po, PSOL, and PM3 in the soil of C. carlesii secondary forests was significantly higher than that in C. carlesii human-assisted regeneration forest and C. lanceolata plantation. The contents of PSOL and PM3 in different-sized aggregates of C. carlesii secondary forests were significantly higher than that in the C. lanceolata plantation. Forest regeneration types significantly influenced the composition and supply potential of phosphorus fractions in soil aggregates. The proportions of PSOL, and PM3 to TP in different-sized soil aggregates were significantly lower in C. carlesii human-assisted regeneration forest compared with C. carlesii secondary forest. PSOR and DPSM3 in different-sized soil aggregates were significantly lower in C. lanceolata plantation than that in C. carlesii secondary forest. Overall, our results indicated that natural regeneration is more favorable for maintaining soil phosphorus availability, and that forest regeneration affects soil phosphorus availa-bility and its supply potential by altering the composition of soil aggregates.


Subject(s)
Fagaceae , Soil , Humans , Phosphorus , Forests , Clay , China , Carbon/analysis
16.
Front Endocrinol (Lausanne) ; 15: 1280760, 2024.
Article in English | MEDLINE | ID: mdl-38469148

ABSTRACT

Background: This study was designed to explore the effects of flaxseed oil on the metaphase II (MII) oocyte rates in women with decreased ovarian reserve (DOR). Methods: The women with DOR were divided into a study group (n = 108, flaxseed oil treatment) and a control group (n = 110, no treatment). All patients were treated with assisted reproductive technology (ART). Subsequently, the ART stimulation cycle parameters, embryo transfer (ET) results, and clinical reproductive outcomes were recorded. The influencing factors affecting the MII oocyte rate were analyzed using univariate analysis and multivariate analysis. Results: Flaxseed oil reduced the recombinant human follicle-stimulating hormone (r-hFSH) dosage and stimulation time and increased the peak estradiol (E2) concentration in DOR women during ART treatment. The MII oocyte rate, fertilization rate, cleavage rate, high-quality embryo rate, and blastocyst formation rate were increased after flaxseed oil intervention. The embryo implantation rate of the study group was higher than that of the control group (p = 0.05). Additionally, the female age [odds ratio (OR): 0.609, 95% confidence interval (CI): 0.52-0.72, p < 0.01] was the hindering factor of MII oocyte rate, while anti-Müllerian hormone (AMH; OR: 100, 95% CI: 20.31-495, p < 0.01), peak E2 concentration (OR: 1.00, 95% CI: 1.00-1.00, p = 0.01), and the intake of flaxseed oil (OR: 2.51, 95% CI: 1.06-5.93, p = 0.04) were the promoting factors for MII oocyte rate. Conclusion: Flaxseed oil improved ovarian response and the quality of oocytes and embryos, thereby increasing the fertilization rate and high-quality embryo rate in DOR patients. The use of flaxseed oil was positively correlated with MII oocyte rate in women with DOR. Clinical trial number: https://www.chictr.org.cn/, identifier ChiCTR2300073785.


Subject(s)
Linseed Oil , Ovarian Reserve , Female , Humans , Dietary Supplements , Embryo Transfer/methods , Fertilization in Vitro , Linseed Oil/pharmacology , Metaphase , Oocytes
17.
Chemosphere ; 352: 141508, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38387658

ABSTRACT

Recycled PET (rPET) is gaining popularity for use in the production of new food contact materials (FCMs) under the context of circular economy. However, the limited information on contaminants in rPET from China and concerns about their potential risk are major obstacles to their use in FCM in China. Fifty-five non-volatile compounds were tentatively identified in 126 batches of hot-washed rPET flakes aimed for food packaging applications in China. Although the 55 substances are not necessarily migratable and may not end up in the contacting media, their presence indicates a need for proper management and control across the value chain. For this reason, the 55 substances prioritized on the basis of level of concerns and in-silico genotoxicity profiler. Among them, dimethoxyethyl phthalate, dibutyl phthalate, bis(2-ethylhexyl) phthalate were classified as level V substances, and Michler's ketone and 4-nitrophenol were both categorized as level V substances and had the genotoxic structure alert, while 2,4,5-trimethylaniline was specified with genotoxic structure alert. The above substances have high priority and may pose a potential risk to human health, therefore special attention should be paid to their migration from rPET. Aside from providing valuable information on non-volatile contaminants present in hot-washed rPET flakes coming from China, this article proposed a prioritization workflow that can be of great help to identify priority substances deserving special attention across the value chain.


Subject(s)
Dibutyl Phthalate , Food Contamination , Humans , China , Dibutyl Phthalate/analysis , Food Contamination/analysis , Recycling
18.
Plant Dis ; 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38416046

ABSTRACT

Forever Summer Hydrangea (Hydrangea macrophylla) is a common flowering plant in the Yangtze River Valley area of China, and it is widely cultivated globally (Chen et al. 2015). In July 2023, H. macrophylla leaves exhibiting visible diseased lesions were reported in a nursery in Wuhu, Anhui Province, China. The incidence reached 40% in a 0.2 ha area. The primary disease symptom was multiple irregular necrotic spots (0.5 to 1 mm in diameter) appearing on the leaves. These spots on the leaves were faded yellow around the perimeter and grayish brown in the center.). 15 leaf samples were sterilized with 75% alcohol and rinsed three times in sterile distilled water, then transferred to antibiotic-added potato dextrose agar (PDA) for incubation at 27°C. The colonies were fluffy, flocculent, or hairy, dark green, gray-green to gray-brown in color, and spreading or protruding punctate with a colorless halo on PDA. The conidiophores were brown to dark brown, smooth or rough surface, mostly unbranched, clearly differentiated, erect or curved. The conidia displayed a light brown to brown hue, lemon shape, fusiform, elongated ellipsoid or others with obvious spore markings and spore umbilicus. Genomic DNA was extracted from fungal colonies on infected leaves of three collections separately (Braun et al. 2003) and the internal transcribed spacer regions (ITS), actin (ACT) genes and partial translation elongation factor-l-alpha (EF) were amplified and sequenced using the primers ITS1/4 (Yin et al. 2012), ACT-512F/ACT-783R and EF 1-728F/986R (Carbone and Kohn 1999), respectively. DNA sequences of isolates were identical and deposited in GenBank (accession no. OR362754 for ITS, OR611929 for ACT and PP209106 for EF). The consensus sequences from ITS, EF and ACT showed 100%, 98.98% and 100% identical to Cladosporium strains (accession no. OQ186140.1, MT154169.1 and OL322092.1), respectively. To confirm the pathogenicity of the isolates, hydrangeas were planted in 15-cm pots containing commercial potting mix (one plant/pot). Three healthy plants were inoculated at the five to eight leaf stage by spraying 50 µL of the isolate conidial suspension (4 × 106 spores/mL) on healthy leaves. Three plants treated with sterile distilled water were used as controls. After inoculation, all plants were placed in a humidity chamber (>95% relative humidity, 26°C) for 48 h and then transferred to a greenhouse at 22/27°C. All inoculated leaves exhibited symptoms similar to those observed in the nursery 10 days after inoculation, while no symptoms were observed for control leaves. The fungus was re-isolated and confirmed to be C. tenuissimum. Based on the above morphological characterization and molecular identification, the causal agent for this leaf spot disease was identified as C. tenuissimum. Although C. tenuissimum has been reported to cause disease on H. paniculata in northern China (Li et al.2021), this is the first time that C. tenuissimum has been found on H. macrophylla in southern China. This new disease of H. macrophylla caused by C. tenuissimum is a threat to urban greening and is worth further investigation.

19.
Cell Oncol (Dordr) ; 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38393513

ABSTRACT

PURPOSE: Sunitinib is a recommended drug for metastatic renal cell carcinoma (RCC). However, the therapeutic potential of sunitinib is impaired by toxicity and resistance. Therefore, we seek to explore a combinatorial strategy to improve sunitinib efficacy of low-toxicity dose for better clinical application. METHODS: We screen synergistic reagents of sunitinib from a compound library containing 1374 FDA-approved drugs by in vitro cell viability evaluation. The synergistically antiproliferative and proapoptotic effects were demonstrated on in vitro and in vivo models. The molecular mechanism was investigated by phosphoproteomics, co-immunoprecipitation, immunofluorescence and western-blot assays, etc. RESULTS: From the four-step screening, nilotinib stood out as a potential synergistic killer combined with sunitinib. Subsequent functional evaluation demonstrated that nilotinib and sunitinib synergistically inhibit RCC cell proliferation and promote apoptosis in vitro and in vivo. Mechanistically, nilotinib activates E3-ligase HUWE1 and in combination with sunitinib renders MCL-1 for degradation via proteasome pathway, resulting in the release of Beclin-1 from MCL-1/Beclin-1 complex. Subsequently, Beclin-1 induces complete autophagy flux to promote antitumor effect. CONCLUSION: Our findings revealed that a novel mechanism that nilotinib in combination with sunitinib overcomes sunitinib resistance in RCC. Therefore, this novel rational combination regimen provides a promising therapeutic avenue for metastatic RCC and rationale for evaluating this combination clinically.

20.
Phys Rev Lett ; 132(5): 056301, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38364160

ABSTRACT

Recent experiments reported an antisymmetric planar Hall effect, where the Hall current is odd in the in plane magnetic field and scales linearly with both electric and magnetic fields applied. Existing theories rely exclusively on a spin origin, which requires spin-orbit coupling to take effect. Here, we develop a general theory for the intrinsic planar Hall effect (IPHE), highlighting a previously unknown orbital mechanism and connecting it to a band geometric quantity-the anomalous orbital polarizability (AOP). Importantly, the orbital mechanism does not request spin-orbit coupling, so sizable IPHE can occur and is dominated by an orbital contribution in systems with weak spin-orbit coupling. Combined with first-principles calculations, we demonstrate our theory with quantitative evaluation for bulk materials TaSb_{2}, NbAs_{2}, and SrAs_{3}. We further show that AOP and its associated orbital IPHE can be greatly enhanced at topological band crossings, offering a new way to probe topological materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...