Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Neuroscience ; 554: 26-33, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38964452

ABSTRACT

In order to comprehensively understand the changes of brain networks in patients with chronic tinnitus, this study combined static and dynamic analysis methods to explore the abnormalities of brain networks. Thirty-two patients with chronic tinnitus and 30 age-, sex- and education-matched healthy controls (HC) were recruited. Independent component analysis was used to identify resting-state networks (RSNs). Static and dynamic functional network connectivity (FNC) were performed. The temporal properties of brain network including mean dwell time (MDT), fraction time (FT) and numbers of transitions (NT) were calculated. Two-sample t test and Spearman's correlation were used for group compares and correlation analysis. Four RSNs showed abnormal FNC including auditory network (AUN), default mode network (DMN), attention network (AN) and sensorimotor network (SMN). For static analysis, tinnitus patients showed significantly decreased FNC in AUN-DMN, AUN-AN, DMN-AN, and DMN-SMN than HC [p < 0.05, false discovery rate (FDR) corrected]. For dynamic analysis, tinnitus patients showed significantly decreased FNC in DMN-AN in state 3 (p < 0.05, FDR corrected). MDT in state 3 was significantly decreased in tinnitus patients (t = 2.039, P = 0.046). In the tinnitus group, the score of tinnitus functional index (TFI) was negatively correlated with MDT and FT in state 4, and the duration of tinnitus was positively correlated with FT in state 1 and NT. Chronic tinnitus causes abnormal brain network connectivity. These abnormal brain networks help to clarify the mechanism of tinnitus generation and chronicity, and provide a potential basis for the treatment of tinnitus.


Subject(s)
Brain , Magnetic Resonance Imaging , Nerve Net , Tinnitus , Humans , Tinnitus/physiopathology , Tinnitus/diagnostic imaging , Male , Female , Adult , Brain/physiopathology , Brain/diagnostic imaging , Nerve Net/physiopathology , Nerve Net/diagnostic imaging , Middle Aged , Chronic Disease , Neural Pathways/physiopathology , Neural Pathways/diagnostic imaging , Brain Mapping
2.
Front Neurosci ; 17: 1189087, 2023.
Article in English | MEDLINE | ID: mdl-37521682

ABSTRACT

Objectives: To date, most studies on autism spectrum disorder (ASD) have focused on sample sets that were primarily or entirely composed of males; brain spontaneous activity changes in females remain unclear. The purpose of this study was to explore changes in the brain spontaneous neural activity in females with ASD. Methods: In this study, resting-state functional magnetic resonance images (rs-fMRI) of 41 females with ASD and 41 typically developing (TD) controls were obtained from the ABDIE database. The amplitude of low-frequency fluctuation (ALFF), fractional ALFF (fALFF), and regional homogeneity (ReHo) of the two groups were calculated to detect the regional brain activity. A two independent sample t-test was used to analyze differences between the ASD and TD groups and a p-value <0.05 was considered statistically significant after false discovery rate (FDR) correction. Pearson correlation analysis was conducted between social responsiveness scale (SRS) scores and the local activity of significantly different brain regions. Results: Compared with the typically developing (TD) group, the values of ALFF and ReHo were significantly increased in the left superior temporal gyrus (STG), while the values of ReHo were significantly decreased in the left superior frontal gyrus (SFG), left middle occipital gyrus (MOG), bilateral superior parietal lobule (SPL), and bilateral precuneus in the females with ASD group. Correlation analysis showed that the ReHo of the right precuneus was positively correlated to the total SRS, social communication, and autistic mannerisms. Conclusion: Spontaneous activity changes in females with ASD involved multiple brain regions and were related to clinical characteristics. Our results may provide some help for further exploring the neurobiological mechanism of females with ASD.

3.
Neuroscience ; 523: 132-139, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37270101

ABSTRACT

Most neuroimaging studies investigating autism spectrum disorder (ASD) have focused on static brain function, but ignored the dynamic features of spontaneous brain activities in the temporal dimension. Research of dynamic brain regional activities might help to fully investigate the mechanisms of ASD patients. This study aimed to examine potential changes in the dynamic characteristics of regional neural activities in adult ASD patients and to detect whether the changes were associated with Autism Diagnostic Observation Schedule (ADOS) scores. Resting-state functional MRI was obtained on 77 adult ASD patients and 76 healthy controls. The dynamic regional homogeneity (dReHo) and dynamic amplitude of low-frequency fluctuations (dALFF) were compared between the two groups. Correlation analyses were also performed between dReHo and dALFF in areas showing group differences and ADOS scores. In ASD group, significant differences in dReHo were observed in the left middle temporal gyrus (MTG.L). Besides, we found increased dALFF in the left middle occipital gyrus (MOG.L), left superior parietal gyrus (SPG.L), left precuneus (PCUN.L), left inferior temporal gyrus (ITG.L), and right inferior frontal gyrus, orbital part (ORBinf.R). Furthermore, a significant positive correlation was found between dALFF in the PCUN.L and the ADOS_TOTAL scores, ADOS_SOCIAL scores; the dALFF in the ITG.L, SPG.L was positively associated with ADOS_SOCIAL scores. In conclusion, adults with ASD have a wide area of dynamic regional brain function abnormalities. These suggested that dynamic regional indexes might be used as a powerful measure to help us obtain a more comprehensive understanding of neural activity in adult ASD patients.


Subject(s)
Autism Spectrum Disorder , Humans , Adult , Autism Spectrum Disorder/diagnostic imaging , Brain Mapping/methods , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Neuroimaging
4.
Neurosci Lett ; 809: 137298, 2023 07 13.
Article in English | MEDLINE | ID: mdl-37196973

ABSTRACT

OBJECTIVE: The objective of this study is to explore the brain activity alterations in Parkinson's disease (PD) from the perspectives of neuronal activity, synchronization of neuronal activity, and coordination of whole-brain activity. METHODS: In this study, we recruited 38 PD patients and 35 matched healthy controls (HCs). We explored intrinsic brain activity alterations in PD by comparing resting-state functional magnetic resonance imaging (rs-fMRI) metrics of the amplitude of low-frequency of fluctuation (ALFF), the fractional amplitude of low-frequency fluctuation (fALFF), percent amplitude of fluctuation (PerAF), regional homogeneity (ReHo), and degree centrality (DC). Two-sample t-tests were used to determine the differences between the two groups. Spearman correlation analysis was used to explore the relationships between abnormal ALFF, fALFF, PerAF, ReHo, and DC values and clinical indicators such as the Movement Disorder Society's Unified Parkinson's Disease Rating Scale (MDS-UPDRS), Hoehn and Yahr (H&Y) stage, and duration of disease. RESULTS: Compared with the HCs, PD had increased ALFF,fALFF, and PerAF in the temporal lobe and cerebellum, and decreased ALFF,fALFF, and PerAF in the occipital-parietal lobe in the neuronal activity. In the synchronization of neuronal activity, PD patients had increased ReHo in the right inferior parietal lobule and decreased ReHo in the caudate. In the coordination of whole-brain activity, PD patients had increased DC in the cerebellum and decreased DC in the occipital lobe. Correlation analysis showed that there is a correlation between abnormal brain regions and clinical indicators in PD. Notably, the changes in occipital lobe brain activity were found in ALFF, fALFF, PerAF, and DC, and were most correlated with the clinical indicators of PD patients. CONCLUSIONS: This study found that intrinsic brain function in several occipital-temporal-parietal and cerebellum regions was altered in PD patients, potentially related to the clinical indicators of PD. These results may enhance our understanding of the underlying neural mechanisms of PD and may contribute to further exploring the selection of therapeutic targets in PD patients.


Subject(s)
Brain Mapping , Parkinson Disease , Humans , Brain Mapping/methods , Parkinson Disease/diagnostic imaging , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Cerebellum
5.
Neurosci Lett ; 799: 137097, 2023 03 16.
Article in English | MEDLINE | ID: mdl-36716911

ABSTRACT

Post-stroke cognitive impairment (PSCI) is a common symptom following brain stroke, yet the mechanisms remain unknown. This study aimed to investigate alterations of static and dynamic functional network connectivity (sFNC and dFNC) in PSCI patients. We prospectively recruited 17 PSCI patients and 24 Healthy controls (HC). Restingstate fMRI (rs-fMRI) and Mini-Mental State Examination (MMSE) were performed. Independent component analysis combined with sliding-window and K-means clustering approach were applied to examine the FNC among 11 resting-state networks: auditory network (AUDN), left executive control network (lECN), language network (LN), precuneus network (PCUN), right executive control network (rECN), salience network (SN), visuospatial network (VN), dorsal default mode network (dDMN), higher visual network (hVIS), primary visual network (pVIS), and ventral mode network (vDMN). The FNC and dynamic indices (fraction time, mean dwell time, transition number) were calculated. Static and dynamic measures were compared between two groups and the correlation between clinical and imaging indicators was analyzed. For sFNC, PSCI group showed decreased interactions in dDMN-vDMN, vDMN-SN, dDMN-hVIS, AUDN-rECN, and AUDN-VN. For dFNC, we derived 3 states of FNC that occurred repeatedly. Significant group differences were found, including decreased interactions in the AUDN-VN, AUDN-pVIS in state 2 and dDMN-VN in state 3. The mean dwell time in PSCI group was longer in state 1, and negatively correlated with MMSE score. These results demonstrated that PSCI patients are characterized with altered sFNC and dFNC, which could help us explore the neural mechanisms of the PSCI from a new perspective.


Subject(s)
Cognitive Dysfunction , Stroke , Humans , Brain Mapping/methods , Brain , Executive Function , Magnetic Resonance Imaging/methods
6.
Front Hum Neurosci ; 16: 891965, 2022.
Article in English | MEDLINE | ID: mdl-35664346

ABSTRACT

Objectives: Abnormal brain function in ASD patients changes dynamically across developmental stages. However, no one has studied the brain function of prepubertal children with ASD. Prepuberty is an important stage for children's socialization. This study aimed to investigate alterations in local spontaneous brain activity in prepubertal boys with ASD. Materials and Methods: Measures of the amplitude of low-frequency fluctuations (ALFF) and regional homogeneity (ReHo) acquired from resting-state functional magnetic resonance imaging (RS-fMRI) database, including 34 boys with ASD and 49 typically developing (TD) boys aged 7 to 10 years, were used to detect regional brain activity. Pearson correlation analyses were conducted on the relationship between abnormal ALFF and ReHo values and Autism Diagnostic Observation Schedule (ADOS) and Autism Diagnostic Interview-Revised (ADI-R) scores. Results: In the ASD group, we found decreased ALFF in the left inferior parietal lobule (IPL) and decreased ReHo in the left lingual gyrus (LG), left superior temporal gyrus (STG), left middle occipital gyrus (MOG), and right cuneus (p < 0.05, FDR correction). There were negative correlations between ReHo values in the left LG and left STG and the ADOS social affect score and a negative correlation between ReHo values in the left STG and the calibrated severity total ADOS score. Conclusion: Brain regions with functional abnormalities, including the left IPL, left LG, left STG, left MOG, and right cuneus may be crucial in the neuropathology of prepubertal boys with ASD. Furthermore, ReHo abnormalities in the left LG and left STG were correlated with sociality. These results will supplement the study of neural mechanisms in ASD at different developmental stages, and be helpful in exploring the neural mechanisms of prepubertal boys with ASD.

7.
Clin Neuroradiol ; 32(4): 1087-1096, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35543744

ABSTRACT

PURPOSE: This study sought to explore changes of brain dynamic functional network connectivity (dFNC) in adults with autism spectrum disorder (ASD) and investigate their relationship with clinical manifestations. METHODS: Resting-state functional magnetic resonance imaging (rs-fMRI) data were acquired from 78 adult ASD patients from autism brain imaging data exchange datasets, and 65 age-matched healthy controls subjects from the local community. Independent component analysis was conducted to evaluate dFNC patterns on the basis of 13 independent components (ICs) within 11 resting-state networks (RSN), namely, auditory network (AUDN), basal ganglia network (BGN), language network (LN), sensorimotor network (SMN), precuneus network (PUCN), salience network (SN), visuospatial network (VSN), dorsal default mode network (dDMN), high visual network (hVIS), primary visual network (pVIS), ventral default mode network (vDMN). Fraction time, mean dwell time, number of transitions, and RSN connectivity were calculated for group comparisons. Correlation analyses were performed between abnormal metrics and autism diagnostic observation schedule (ADOS) scores. RESULTS: Compared with controls, ASD patients had higher fraction time and mean dwell time in state 2 (P = 0.017, P = 0.014). Reduced dFNC was found in the SMN with PUCN, SMN with hVIS, and increased dFNC was observed in the dDMN with SN in state 2 in the ASD group. Fraction time and mean dwell time was positively correlated with stereotyped behavior scores of ADOS. CONCLUSION: The findings demonstrated the importance of evaluating transient alterations in specific neural networks of adult ASD patients. The abnormal metrics and connectivity may be related to symptoms such as stereotyped behavior.


Subject(s)
Autism Spectrum Disorder , Adult , Humans , Autism Spectrum Disorder/diagnostic imaging , Brain Mapping/methods , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Neural Pathways/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL