Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Sci ; 108(3): 469-477, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28004478

ABSTRACT

Although inhibitors targeting tumor angiogenic pathway have provided improvement for clinical treatment in patients with various solid tumors, the still very limited anti-cancer efficacy and acquired drug resistance demand new agents that may offer better clinical benefits. In the effort to find a small molecule potentially targeting several key pathways for tumor development, we designed, discovered and evaluated a novel multi-kinase inhibitor, CS2164. CS2164 inhibited the angiogenesis-related kinases (VEGFR2, VEGFR1, VEGFR3, PDGFRα and c-Kit), mitosis-related kinase Aurora B and chronic inflammation-related kinase CSF-1R in a high potency manner with the IC50 at a single-digit nanomolar range. Consequently, CS2164 displayed anti-angiogenic activities through suppression of VEGFR/PDGFR phosphorylation, inhibition of ligand-dependent cell proliferation and capillary tube formation, and prevention of vasculature formation in tumor tissues. CS2164 also showed induction of G2/M cell cycle arrest and suppression of cell proliferation in tumor tissues through the inhibition of Aurora B-mediated H3 phosphorylation. Furthermore, CS2164 demonstrated the inhibitory effect on CSF-1R phosphorylation that led to the suppression of ligand-stimulated monocyte-to-macrophage differentiation and reduced CSF-1R+ cells in tumor tissues. The in vivo animal efficacy studies revealed that CS2164 induced remarkable regression or complete inhibition of tumor growth at well-tolerated oral doses in several human tumor xenograft models. Collectively, these results indicate that CS2164 is a highly selective multi-kinase inhibitor with potent anti-tumor activities against tumor angiogenesis, mitosis and chronic inflammation, which may provide the rationale for further clinical assessment of CS2164 as a therapeutic agent in the treatment of cancer.


Subject(s)
Adenocarcinoma/drug therapy , Angiogenesis Inhibitors/therapeutic use , Colonic Neoplasms/drug therapy , M Phase Cell Cycle Checkpoints/drug effects , Mitosis/drug effects , Neovascularization, Pathologic/drug therapy , Phenylenediamines/therapeutic use , Quinolines/therapeutic use , 3T3 Cells , Animals , Aurora Kinase B/antagonists & inhibitors , Cell Line, Tumor , Cell Proliferation/drug effects , Female , Histones/metabolism , Humans , Inflammation/drug therapy , Mice , Mice, Inbred BALB C , Mice, Nude , Molecular Docking Simulation , Naphthalenes , Phosphorylation/drug effects , Proto-Oncogene Proteins c-kit/antagonists & inhibitors , Receptor, Platelet-Derived Growth Factor alpha/antagonists & inhibitors , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/antagonists & inhibitors , Receptors, Vascular Endothelial Growth Factor/antagonists & inhibitors , Xenograft Model Antitumor Assays
2.
Biomed Pharmacother ; 68(4): 483-91, 2014 May.
Article in English | MEDLINE | ID: mdl-24721323

ABSTRACT

Combination of low doses of histone deacetylases inhibitors and chemotherapy drugs is considered as one of the most promising strategies to increase the anticancer efficacy. Chidamide is a novel benzamide chemical class of HDAC inhibitor that selectively inhibited HDAC1, 2, 3 and 10. We sought to determine whether chidamide may enhance platinum-induced cytotoxicity in NSCLC cells. In this study, the combination of chidamide with carboplatin showed a good synergism on growth inhibition with the mean combination index value as 0.712 and 0.639 in A549 and NCI-H157 cells, respectively. The used concentration of chidamide was non-toxic on cells by itself as low as 0.3µM. All of our experiments were comparisons between combination regimen and single carboplatin regimen in A549 and NCI-H157 cell lines. Phosphorylated histone H2A.X (γH2A.X), a hall marker of DNA damage response, was dramatically increased by the combination treatment. Cell cycle analysis by flow cytometry and phosphorylation level analysis of histone H3 (Ser10) by western blotting showed that combination treatment significantly increased the percentage of G2/M phase of cells. Mitochondrial membrane potential and cleaved-PARP1 level analysis indicate that chidamide synergistically enhances carboplatin-induced apoptosis. Additionally, synergistic effects of chidamide were found when it was combined with two other platinum drugs (cisplatin and oxaliplatin). The results suggest that Chidamide in combination with platinum drugs may be a novel therapeutic option for NSCLC.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Apoptosis/drug effects , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Aminopyridines/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Benzamides/administration & dosage , Carboplatin/administration & dosage , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cisplatin/administration & dosage , DNA Damage/drug effects , Dose-Response Relationship, Drug , Drug Synergism , Flow Cytometry , Humans , Lung Neoplasms/pathology , Organoplatinum Compounds/administration & dosage , Oxaliplatin
SELECTION OF CITATIONS
SEARCH DETAIL
...