Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Food Sci Technol ; 57(4): 1405-1414, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32180636

ABSTRACT

The aim of this study was to evaluate the influence of adding copigment gallic acid (GA) on the stability of anthocyanin and color in blueberry juice, and assays were carried out with different anthocyanin:GA molar ratios (1:0, 1:1, 1:3, 1:5) in accelerated experiments (40 °C for 10 days). Results showed that the addition of GA made blueberry juice to appear more crimson color tonality, color saturation and anthocyanins stability. The most obvious hyperchromic effect appeared in juice with 1:5 of anthocyanin:GA molar ratios, and in this ratio, total anthocyanin content (137.67 mg/L) and main anthocyanin peonidin-3-glucoside content (51.68 mg/L) of the blueberry juice were higher than juice without copigment (total anthocyanin of 116.96 mg/L and peonidin-3-glucoside of 34.2 mg/L). Furthermore, anthocyanins in blueberry juice copigmented with molar ratios 1:5 of anthocyanin:GA were more stable at 4 °C than that at 25 °C and 40 °C. Thus, the addition of gallic acid at appropriate levels might be a promising juice process technology to obtain juices with high color quality and anthocyanin stability.

2.
Food Res Int ; 116: 336-345, 2019 02.
Article in English | MEDLINE | ID: mdl-30716954

ABSTRACT

To improve sustained-release property, stability and bioavailability of anthocyanins (ACNs) in vitro, we fabricated the nanocomplexes with chitosan hydrochloride (CHC), carboxymethyl chitosan (CMC) and ß-Lactoglobulin (ß-Lg). Response surface methodology (RSM) combined with desirability function was employed to optimize ACNs-loaded chitosan/ß-Lg (CHC/CMC expressed with chitosan) nanocomplexes with maximum anthocyanins retention rate, preferred particle size and high encapsulation efficiency. The result suggested that the optimized conditions were 5.16 mg/mL of ß-Lg, 1.45 mg/mL of CMC and 6.09 of pH CMC solution. Based on optimized conditions, anthocyanins retention rate, particle size and encapsulation efficiency of ACNs-loaded chitosan/ß-Lg nanocomplexes were 68.9%, 91.71 nm and 69.33%, respectively. ACNs-loaded chitosan/ß-Lg nanocomplexes was more stable in simulated gastric fluid (SGF, pH 1.2) and simulated intestinal fluid (SIF, pH 6.8) by showing less ACNs release (%) than that ACNs solution and ACNs-loaded CHC/CMC nanocomplexes. Further, stability and bioavailability of ACNs in simulated gastrointestinal (GI) tract were significantly improved by nanocomplexes encapsulation. Compared with ACNs-loaded CHC/CMC nanocomplexes, ACNs-loaded chitosan/ß-Lg nanocomplexes displayed better sustained ACNs release, stability and bioavailability.


Subject(s)
Anthocyanins/chemistry , Chitosan/chemistry , Drug Stability , Lactoglobulins/chemistry , Anthocyanins/pharmacology , Biological Availability , Chitosan/analogs & derivatives , Drug Carriers/chemistry , Gastrointestinal Tract/metabolism , In Vitro Techniques , Nanoparticles/chemistry , Particle Size
3.
Food Chem ; 221: 1671-1677, 2017 Apr 15.
Article in English | MEDLINE | ID: mdl-27979145

ABSTRACT

The optimal preparation parameters to create anthocyanin-loaded chitosan nanoparticles was predicted using response surface methodology (RSM). A Box-Behnken design was used to determine the preparation parameters that would achieve the preferred particle size and high encapsulation efficiency. The result suggested that the optimized conditions were 2.86mg/mL carboxymethyl chitosan (CMC), 0.98mg/mL chitosan hydrochloride (CHC) and 5.97mg anthocyanins. Using the predicted amounts, the experimentally prepared particles averaged 219.53nm with 63.15% encapsulation efficiency. The result was less than 5% different than the predicted result of 214.83nm particle size and 61.80% encapsulation efficiency. Compared with the free anthocyanin solution, the anthocyanin-loaded chitosan nanoparticles showed a slowed degradation in simulated gastrointestinal fluid. Compared with the free anthocyanin solutions in a model beverage system, the stability of the anthocyanins was increased in the anthocyanin-loaded chitosan nanoparticles.


Subject(s)
Anthocyanins/metabolism , Chitosan/analogs & derivatives , Chitosan/chemistry , Drug Carriers/chemistry , Nanoparticles , Beverages , Body Fluids , Gastrointestinal Tract , Humans , Particle Size
4.
Food Chem ; 204: 70-76, 2016 Aug 01.
Article in English | MEDLINE | ID: mdl-26988477

ABSTRACT

Ultrasound-Assisted Extraction (UAE) of total anthocyanins (TA) and phenolics (TP) from Blueberry Wine Pomace (BWP) was optimized using Response Surface Methodology (RSM). A Box-Behnken design was used to predict that the optimized conditions were an extraction temperature of 61.03°C, a liquid-solid ratio of 21.70mL/g and a sonication time of 23.67min. Using the modeled optimized conditions, the predicted and experimental yields of TA and TP were within a 2% difference. The yields of TA and TP obtained through the optimized UAE method were higher than those using a Conventional Solvent Extraction (CSE) method. Seven anthocyanins, namely delphinidin-3-O-glucoside, delphindin-3-O-arabinoside, petunidin-3-O-glucoside, cyanidin-3-O-arabinoside, cyanidin-3-O-glucoside, malvidin-3-O-glucoside and malvidin-3-O-arabinoside, were found in the BWP extract from both the UAE and CSE methods.


Subject(s)
Anthocyanins/isolation & purification , Blueberry Plants/chemistry , Phenols/isolation & purification , Plant Extracts/analysis , Ultrasonics/methods , Wine/analysis , Food Handling , Glucosides/isolation & purification , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...