Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Bull (Beijing) ; 67(21): 2245-2258, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36546000

ABSTRACT

The uplift of eastern Tibet, Asian monsoon development and the evolution of globally significant Asian biodiversity are all linked, but in obscure ways. Sedimentology, geochronology, clumped isotope thermometry, and fossil leaf-derived numerical climate data from the Relu Basin, eastern Tibet, show at âˆ¼50-45 Ma the basin was a hot (mean annual air temperature, MAAT, ∼27 °C) dry desert at a low-elevation of 0.6 ± 0.6 km. Rapid basin rise to 2.0 ± 0.9 km at 45-42 Ma and to 2.9 ± 0.9 km at 42-40 Ma, with MAATs of âˆ¼20 and âˆ¼16 °C, respectively, accompanied seasonally varying increased annual precipitation to > 1500 mm. From âˆ¼39 to 34 Ma, the basin attained 3.5 ± 1.0 km, near its present-day elevation (∼3.7 km), and MAAT cooled to âˆ¼6 °C. Numerically-modelled Asian monsoon strength increased significantly when this Eocene uplift of eastern Tibet was incorporated. The simulation/proxy congruence points to a distinctive Eocene Asian monsoon, quite unlike that seen today, in that it featured bimodal precipitation and a winter-wet regime, and this enhanced biodiversity modernisation across eastern Asia. The Paleogene biodiversity of Asia evolved under a continually modifying monsoon influence, with the modern Asian monsoon system being unique to the present and a product of a long gradual development in the context of an ever-changing Earth system.


Subject(s)
Biodiversity , Climate , Tibet , Asia, Eastern , Seasons
2.
Sci Adv ; 8(6): eabj0944, 2022 Feb 11.
Article in English | MEDLINE | ID: mdl-35138908

ABSTRACT

Reconstructing the Paleogene topography and climate of central Tibet informs understanding of collisional tectonic mechanisms and their links to climate and biodiversity. Radiometric dates of volcanic/sedimentary rocks and paleotemperatures based on clumped isotopes within ancient soil carbonate nodules from the Lunpola Basin, part of an east-west trending band of basins in central Tibet and now at 4.7 km, suggest that the basin rose from <2.0 km at 50 to 38 million years (Ma) to >4.0 km by 29 Ma. The height change is quantified using the rates at which wet-bulb temperatures (Tw) decline at land surfaces as those surface rise. In this case, Tw fell from ~8°C at ~38 Ma to ~1°C at 29 Ma, suggesting at least ~2.0 km of surface uplift in ~10 Ma under warm Eocene to Oligocene conditions. These results confirm that a Paleogene Central Tibetan Valley transformed to a plateau before the Neogene.

3.
Anal Sci ; 35(3): 323-328, 2019 Mar 10.
Article in English | MEDLINE | ID: mdl-30449833

ABSTRACT

A simplified method using a single column of N,N,N',N'-tetraoctyl diglycolamide (TODGA) resin is developed for the separation of Sr, Nd and Hf with matrix and interference elements from geological samples, and for subsequent determination of their isotopic ratios by multi-collector inductively coupled plasma-mass spectrometry (MC-ICP-MS). The analytes of Sr, Nd and Hf are absorbed by the TODGA resin and eluted with 6 mol/L HNO3, 1.2 mol/L HCl and 1 mol/L HNO3-1.6 mol/L HF, respectively. The separation procedure is validated by the certified reference materials (CRMs) of BHVO-2, BCR-2 and AGV-2 with analyte recovery greater than 97%. The ratios are measured for 87Sr/86Sr, 143Nd/144Nd and 176Hf/177Hf and the mean values (2σ) are 0.703455 (16), 0.512977 (12) and 0.283108 (8) for BHVO-2, 0.705008 (18), 0.512633 (10) and 0.282878 (4) for BCR-2, and 0.703989 (20), 0.512791 (8) and 0.282982 (8) for AGV-2, which are consistent with the certified values.

SELECTION OF CITATIONS
SEARCH DETAIL
...