Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(19)2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36234160

ABSTRACT

Magnesium phosphate cement (MPC) is a promising alternative cement. However, the rheological property of this new binder is still to be explored. In this study, Response Surface Methodology (RSM) was adopted with Central Composite Design (CCD) to establish mathematical models describing the rheological characteristics of MPC in terms of initial mini slump (Y1), mini-slump loss (Y2), yield stress (Y3) and plastic viscosity (Y4), as a function of three independent variables, namely, water-to-solid ratio (W/S ratio, X1), MgO to MKP ratio (M/P ratio, X2) and borax dosage (X3). The results show that the M/P ratio and borax dosage could significantly affect the yield stress and mini-slump loss of MPC, while the W/S ratio was the significant coefficient influencing plastic viscosity and initial mini slump. The numerical optimised values of X1, X2 and X3 were 0.280, 7.528 and 0.170, respectively, and an MPC paste with desirable rheological characteristics (Y1 161.858 mm, Y2 11.282, Y3 0.680 Pa, Y4 0.263 Pa·s) with the highest desirability of 0.867 can be obtained.

2.
Materials (Basel) ; 15(15)2022 Jul 27.
Article in English | MEDLINE | ID: mdl-35897627

ABSTRACT

The status and stability of the unreacted silica fume (SF) agglomerates existing in concrete structures subjected to various deterioration environments is largely unknown, but is a critical issue which could cause public concern. This work employed a Raman microscope, which combines the Raman spectroscopy with a light optical microscope, to characterize the phase assemblage in 6-month-old SF blended Portland cement (PC) pastes after 3-month exposure to simulated deterioration mechanisms (viz. carbonation, chloride attack, or sulfate attack), in order to illustrate the status of SF. Unhydrated SF phases, in terms of amorphous silica (Raman shift at about 350-540 cm-1), were identified in the SF blended paste samples after being exposed to carbonation and sulfate attack, indicating that there is a potential hazard to the living system, especially the structures undergoing long-term 'interactions' with a contiguous environment.

3.
Materials (Basel) ; 15(12)2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35744192

ABSTRACT

Magnesium phosphate cement (MPC) is a potential inorganic binder for steel coating due to setting and hardening rapidly, and bonding tightly with steel. NH4H2PO4-based MPC as a fire-retardant coating for steel was investigated in this work. MPC coatings were prepared from MPC paste and MPC mortar with expanded vermiculite (EV). The physical-mechanical properties and fireproof performance of MPC coatings were investigated in detail. An infrared thermal imager was employed to collect the temperature distribution and temperature rise with time on the coating samples automatically. The X-ray diffraction (XRD) and Scanning Electron Microscope (SEM) analyses were carried out on the MPC coating after the fireproof test. Re-fire test and corrosion resistance were performed preliminarily on the MPC coating. The results showed that the fireproof performance of MPC coating met the fire protection requirement for steel as long as the thickness of the MPC paste coating was up to 10 mm, while the thickness of MPC mortar coating decreased to 4 mm when adding 40% EV (by mass). Dehydration and decomposition of reacted products in the hardened MPC coating were, to some extent, contributed to the excellent fireproof performance during the fire test. The slight ceramic formation and integration of MPC coating during the fire test would compensate for the decreasing of strength due to the dehydration and decomposition, so that the MPC coating would keep certain fireproof performance when undergoing fire again. MPC is suitable for a fire-retardant coating, while higher tensile bonding strength with steel and potential corrosion resistance on steel, as well as rapid surface drying and hardening can be achieved.

4.
Materials (Basel) ; 14(7)2021 Apr 05.
Article in English | MEDLINE | ID: mdl-33916458

ABSTRACT

Establishing the carbonation profile is of great significance to the prediction of the service life of reinforced concrete structures. In our previous work, Raman spectroscopy was shown to be an efficient tool for characterizing calcium carbonate (CaCO3) polymorphs and their profile in plain Portland cement (PC) matrices. However, as supplementary cementitious materials (SCMs), particularly fly ash (FA) and ground granulated blast furnace slag (GGBS), are widely used in concrete, establishing the carbonation profile without considering the possible effects of these SCMs could be of little significance to the real world. This paper, thus, investigated the effects of FA and GGBS on the working capacity and reliability of Raman spectroscopy for establishing the carbonation profile in PC blends containing SCMs. The thermogravimetry (TG) analysis was also conducted to verify the results from Raman spectroscopy. The results show that Raman spectroscopy demonstrated a good capacity for differentiating the variation of CaCO3 contents in FA or GGBS blends. However, the incorporation of FA and GGBS into the PC system caused some adverse effects on the quantification of CaCO3 by Raman spectroscopy, which could be attributed to the darker color and weak scatter nature of FA and the high content of glassy phases in GGBS.

SELECTION OF CITATIONS
SEARCH DETAIL
...