Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Ethnopharmacol ; 333: 118468, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38906339

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Pueraria lobata is essential medicinal and edible homologous plants widely cultivated in Asian countries. Therefore, P. lobata is widely used in the food, health products and pharmaceutical industries and have significant domestic and international market potential and research value. P. lobata has remarkable biological activities in protecting liver, relieving alcoholism, antioxidation, anti-tumor and anti-inflammation in clinic. However, the potential mechanism of ethyl acetate extract of Pueraria lobata after 70% alcohol extraction (APL) ameliorating nonalcoholic fatty liver disease (NAFLD) has not been clarified. AIM OF THE STUDY: This study aimed to investigate the ameliorative effect of P. lobata extract on human hepatoma cells and injury in rats, and to evaluate its therapeutic potential for ameliorating NAFLD. METHODS: Firstly, the effective part of P. lobata extract was determined as APL by measuring its total substances and antioxidant activity. And then the in vitro and in vivo models of NAFLD were adopted., HepG2 cells were incubated with palmitic acid (PA) and hydrogen peroxide (H2O2). In order to evaluate the effect of APL, Simvastatin and Vitamin C (VC) were used as positive control. Various parameters related to lipogenesis and fatty acid ß-oxidation were studied, such as intracellular lipid accumulation, reactive oxygen species (ROS), Western Blot, mitochondrial membrane potential, apoptosis, and the mechanism of APL improving NAFLD. The chemical components of APL were further determined by HPLC and UPLC-MS, and molecular docking was carried out with Keap1/Nrf2/HO-1 pathway related proteins. RESULTS: APL significantly reduced lipid accumulation and levels of oxidative stress-related factors in vitro and in vivo. Immunohistochemical、Western Blot and PCR analysis showed that the expressions of Nrf2 and HO-1 were up-regulated in APL treatment. The Nrf2 inhibitor ML385 can block the rescue by APL of cellular oxidative stress and lipid accumulation induced by H2O2 and PA, demonstrating its dependence on Nrf2. UPLC/MS analysis showed that there were 3'-hydroxyl puerarin, puerarin, 3'-methoxy puerarin, daidzein, genistin, ononin, daidzin and genistein. CONCLUSION: This study further clarified the mechanism of P. lobata extract in improving NAFLD, which provided a scientific basis for developing new drugs to protect liver injury and laid a solid foundation for developing P. lobata Chinese herbal medicine resources.

2.
Plant Cell Rep ; 43(1): 19, 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38150069

ABSTRACT

KEY MESSAGE: VviWOX13C plays a key regulatory role in the expansin during fruit set. Expansins as a type of non-enzymatic cell wall proteins, are responsible for the loosening and extension in cell walls leading to the enlargement of the plant cells. However, the current studies are still lacking in expansin genes associated with promoting fruit set. Here, 29 members of the expansin gene family were identified in the whole genome of grapes (Vitis vinifera L.), and the functional prediction of expansins was based on the gene annotated information. Results showed that the 29 members of grape expansin gene family could be mainly divided into four subfamilies (EXPA, EXPB, LIKE A, and LIKE B), distributed on 16 chromosomes. Replication analysis showed that there were four segmental duplications and two tandem duplications. Each expansins sequence contained two conserved domain features of grape EXPs (DPBB_1 and Expansin_C) through protein sequence analysis. The transcriptome sequencing results revealed that VviEXPA37, VviEXPA38, and VviEXPA39 were induced and upregulated by CPPU. Furthermore, transcriptional regulatory prediction network indicated that VviWOX13C targeted regulates VviEXPA37, VviEXPA38, and VviEXPA39 simultaneously. EMSA and dual luciferase assays demonstrated that VviWOX13C directly activated the expression of VviEXPA37, VviEXPA38, and VviEXPA39 by directly binding to its promoter. These results provide a basis for further studies on the function and regulatory mechanisms of expansin genes in fruit set.


Subject(s)
Transcription Factors , Vitis , Vitis/genetics , Fruit/genetics , Gene Expression Regulation , Gene Regulatory Networks
3.
Food Funct ; 14(21): 9872-9891, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37853837

ABSTRACT

We investigated the structural properties, foaming capacity and foaming stability, antioxidant activity, and amino acid composition of Kudzu protein (KP) and Kudzu protein hydrolysate (KPH). The peptide sequence of KPH was analyzed using ultra performance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS), and the binding ability of the peptide sequence to Keap1 was predicted through molecular docking simulations. The electrophoresis and molecular weight distribution analysis results showed that the molecular weight of KPH was significantly lower than that of KP, with a mean molecular weight of approximately 2000-5000 Da. The structures and properties were characterized using Fourier transform infrared spectroscopy, relative fluorescence, and circular dichroism. The results showed that KP exposed a large number of hydrophobic groups after enzymatic hydrolysis, and its structure changed from α-helical to random coils. KPH has a higher foaming capacity (200%) and foaming stability (97.5%) than KP, which may be related to the change in structure. These results indicate that moderate hydrolysis can improve the functional properties of KP, providing a new opportunity for its application as a food ingredient. The antioxidant assay results showed that KP and KPH had a good hydroxyl radical, superoxide anion, 1,1-diphenyl-2-picrylhydrazyl (DPPH), and 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) scavenging capacity and a high reducing capacity. KPH exerted better antioxidant effects than KP. The scavenging rates for DPPH, ABTS, hydroxyl radicals, and superoxide anions were 89.31%, 93.14%, 85.74%, and 58.29%, respectively, and its reducing capacity was 2.191, which may be related to the increase in amino acids with antioxidant activity after enzymolysis. In vitro, KP and KPH could significantly repair H2O2-induced oxidative damage in HepG2 cells, reduce the apoptosis rate, activate the Nrf2-Keap1 signaling pathway, reduce the accumulation of reactive oxygen species and malondialdehyde after oxidative damage, increase the activities of superoxide dismutase and glutathione (GSH) peroxidase, and increase the content of GSH and the total antioxidant capacity. Twenty-one peptide components were identified in KPH using UPLC-MS/MS, and the binding ability of 21 peptide components to Keap1 was analyzed through molecular docking technology. The results showed that all 21 peptides in KPH had good antioxidant activity, and real-time quantitative PCR (qRT-PCR) analysis was conducted to further explain the high antioxidant activity of KPH at the genetic level. These results show that KP and KPH are suitable for preparing antioxidant foods and related health foods to prevent oxidation-related diseases. KPH has more beneficial effects than KP.


Subject(s)
Antioxidants , Pueraria , Humans , Antioxidants/pharmacology , Antioxidants/chemistry , Protein Hydrolysates/chemistry , Hydrogen Peroxide/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Chromatography, Liquid , Hep G2 Cells , Molecular Docking Simulation , Tandem Mass Spectrometry , NF-E2-Related Factor 2/metabolism , Peptides/chemistry , Glutathione/metabolism , Superoxides/metabolism , Hydroxyl Radical
SELECTION OF CITATIONS
SEARCH DETAIL
...