Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Phytomedicine ; 130: 155345, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38810555

ABSTRACT

BACKGROUND: Sepsis causes inflammation in response to infection, often leading to acute lung injury (ALI). Yazhicao (Commelina communis L., YZC) is widely distributed in the global tropics and has good anti-respiratory inflammatory activity; however, the protection of YZC against septic-ALI has not been established. PURPOSE: The role of YZC in septic-ALI will be investigated in this study. METHODS AND RESULTS: In this study, YZC was shown to inhibit excessive inflammation and alleviate septic-ALI. Network pharmacology predicts that Quercetin, Acacetin and Diosmetin have the potential to serve as the pharmacological substance basis of YZC in alleviating septic-ALI. The metabolomics results indicated that YZC could improve the metabolic disorders caused by septic-ALI, which were mostly concerned with energy metabolism and amino acid metabolism, with Trimethylamine (TMA)/Trimethylamine N-oxide (TMAO) being potential small molecule metabolic markers for the clinical diagnosis and treatment of septic-ALI. YZC inhibits the initiation and progression of septic-ALI by controlling the TMA/TMAO metabolites. Our results also suggest that YZC protects the intestinal barrier from damage. Furthermore, our research indicated that YZC reduces TMAO synthesis by inhibiting TMA production through remodeling the intestine microbiota. We investigated the mechanism of YZC-mediated protection against septic-ALI and showed that YZC reduced the expression of proteins associated with NLRP3 inflammatory vesicles in the lung by inhibiting the expression of NF-κB. CONCLUSION: These results show that YZC inhibits the NF-κB/NLRP3 signaling pathway by regulating metabolic and intestinal flora disorders in septic-ALI mice to reduce TMAO synthesis. This study presents a theoretical groundwork for the advancement of novel medications and clinical use of YZC to enhance septic-ALI and furnishes a theoretical rationale for regulating intestinal microbiota as a therapeutic instrument to treat sepsis and septic-ALI.


Subject(s)
Acute Lung Injury , Gastrointestinal Microbiome , Metabolomics , Methylamines , NLR Family, Pyrin Domain-Containing 3 Protein , Sepsis , Signal Transduction , Animals , Gastrointestinal Microbiome/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Signal Transduction/drug effects , Male , Sepsis/drug therapy , Methylamines/metabolism , Mice , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Mice, Inbred C57BL , Plant Extracts/pharmacology , Disease Models, Animal , Network Pharmacology
2.
Environ Sci Technol ; 57(43): 16190-16205, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37752410

ABSTRACT

Bisphenol A (BPA) is a well-known endocrine-disrupting chemical (EDC) that has estrogenic activities. In addition to disrupting reproductive development and function via estrogenic signaling pathways, BPA can also interfere with nonreproductive functions through nonestrogenic pathways; however, the mechanisms underlying such nonestrogenic activities are not well understood. In this study, we demonstrated that BPA could disrupt otolith formation during the early development of zebrafish with long-lasting ethological effects. Using multiple mutants of estrogen receptors, we provided strong genetic evidence that the BPA-induced otolith malformation was independent of estrogen signaling. Transcriptome analysis revealed that two genes related to otolith development, otopetrin 1 (otop1) and starmaker (stm), decreased their expression significantly after BPA exposure. Knockout of both otop1 and stm genes could phenocopy the BPA-induced otolith malformation, while microinjection of their mRNAs could rescue the BPA-induced abnormalities of otolith formation. Further experiments showed that BPA inhibited the expression of otop1 and stm by activating the MEK/ERK-EZH2-H3K27me3 signaling pathway. Taken together, our study provided comprehensive genetic and molecular evidence that BPA induced the otolith malformation through nonestrogenic pathway during zebrafish early development and its activities involved epigenetic control of key genes (e.g., otop1 and stm) participating in otolith formation.


Subject(s)
Endocrine Disruptors , Zebrafish , Animals , Zebrafish/genetics , Otolithic Membrane , Phenols/toxicity , Benzhydryl Compounds/toxicity , Epigenesis, Genetic , Endocrine Disruptors/toxicity , Endocrine Disruptors/metabolism
3.
J Biol Chem ; 299(6): 104829, 2023 06.
Article in English | MEDLINE | ID: mdl-37201586

ABSTRACT

Hypoxia-inducible factor-1 (HIF-1) is a critical transcription factor that regulates the expression of genes involved in cellular adaptation to low oxygen levels. Aberrant regulation of the HIF-1 signaling pathway is linked to various human diseases. Previous studies have established that HIF-1α is rapidly degraded in a von Hippel-Lindau protein (pVHL)-dependent manner under normoxic conditions. In this study, we find that pVHL binding protein 1 (VBP1) is a negative regulator of HIF-1α but not HIF-2α using zebrafish as an in vivo model and in vitro cell culture models. Deletion of vbp1 in zebrafish caused Hif-1α accumulation and upregulation of Hif target genes. Moreover, vbp1 was involved in the induction of hematopoietic stem cells (HSCs) under hypoxic conditions. However, VBP1 interacted with and promoted the degradation of HIF-1α in a pVHL-independent manner. Mechanistically, we identify the ubiquitin ligase CHIP and HSP70 as new VBP1 binding partners and demonstrate that VBP1 negatively regulated CHIP and facilitated CHIP-mediated degradation of HIF-1α. In patients with clear cell renal cell carcinoma (ccRCC), lower VBP1 expression was associated with worse survival outcomes. In conclusion, our results link VBP1 with CHIP stability and provide insights into underlying molecular mechanisms of HIF-1α-driven pathological processes.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Animals , Humans , Zebrafish/metabolism , Von Hippel-Lindau Tumor Suppressor Protein/genetics , Von Hippel-Lindau Tumor Suppressor Protein/metabolism , Transcription Factors/metabolism , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/metabolism , Kidney Neoplasms/genetics , Kidney Neoplasms/metabolism , Hypoxia , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Cytoskeletal Proteins , Molecular Chaperones
4.
J Ethnopharmacol ; 307: 116229, 2023 May 10.
Article in English | MEDLINE | ID: mdl-36773789

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Chronic obstructive pulmonary disease (COPD) is the third leading cause of death globally and thus imposes heavy economic burden on patients, their families, and society. Furthermore, COPD seriously affects the quality of life of patients. The concept of "overall regulation" of traditional Chinese medicine (TCM) plays an important role in the prevention and treatment of COPD. AIM OF THE STUDY: The objective of this review is to summarize the TCM theories, experimental methods, TCM extracts, active TCM ingredients, and TCM formulas for the treatment of COPD and reveal the effects and mechanisms of TCM treatments on COPD. MATERIALS AND METHODS: This article reviewed literature on TCM-based treatments for COPD reported from 2016 to 2021. Relevant scientific studies were obtained from databases that included PubMed, China National Knowledge Infrastructure, Web of Science, Google Scholar, The Plant List, ScienceDirect, and SciFinder. RESULTS: This review summarized TCM-based theory, experimental methods, active ingredients, and potential toxicities, the effects of TCM extracts and formulations, and their mechanisms for the treatment of COPD. Most investigators have used in vivo models of cigarette smoke combined with lipopolysaccharide induction in rats and in vitro models of cigarette smoke extract induction. The active ingredients of TCM used for the treatment of COPD in relevant studies were triterpenoids, flavonoids, phenolics, quinones, glycosides, and alkaloids. TCMs commonly used in the treatment of COPD include antipyretic drugs, tonic medicines, anticough medications, and asthma medications. TCM can treat COPD by suppressing inflammation, reducing oxidative stress, inhibiting apoptosis, and improving airway remodeling. CONCLUSIONS: This review enriches the theory of COPD treatments based on TCM, established the clinical significance and development prospects of TCM-based COPD treatments, and provided the necessary theoretical support for the further development of TCM resources for the treatment of COPD.


Subject(s)
Asthma , Drugs, Chinese Herbal , Pulmonary Disease, Chronic Obstructive , Rats , Animals , Medicine, Chinese Traditional , Quality of Life , Pulmonary Disease, Chronic Obstructive/drug therapy , Phytotherapy , Asthma/drug therapy , Drugs, Chinese Herbal/pharmacology
5.
Phytomedicine ; 107: 154469, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36202056

ABSTRACT

BACKGROUND: Acute lung injury (ALI) is a serious health issue which causes significant morbidity and mortality. Inflammation is an important factor in the pathogenesis of ALI. Even though ALI has been successfully managed using a traditiomal Chinese medicine (TCM), Huanglian Jiedu Decoction (HLD), its mechanism of action remains unknown. PURPOSE: This study explored the therapeutic potential of HLD in lipopolysaccharide (LPS)-induced ALI rats by utilizing integrative pharmacology. METHODS: Here, the therapeutic efficacy of HLD was evaluated using lung wet/dry weight ratio (W/D), myeloperoxide (MPO) activity, and levels of tumor necrosis factor (TNF-α), interleukin (IL)-1ß and IL-6. Network pharmacology predictd the active components of HLD in ALI. Lung tissues were subjected to perform Hematoxylin-eosin (H&E) staining, metabolomics, and transcriptomics. The acid ceramidase (ASAH1) inhibitor, carmofur, was employedto suppress the sphingolipid signaling pathway. RESULTS: HLD reduced pulmonary edema and vascular permeability, and suppressed the levels of TNF-α, IL-6, and IL-1ß in lung tissue, Bronchoalveolar lavage fluid (BALF), and serum. Network pharmacology combined with transcriptomics and metabolomics showed that sphingolipid signaling was the main regulatory pathway for HLD to ameliorate ALI, as confirmed by immunohistochemical analysis. Then, we reverse verified that the sphingolipid signaling pathway was the main pathway involed in ALI. Finally, berberine, baicalein, obacunone, and geniposide were docked with acid ceramidase to further explore the mechanisms of interaction between the compound and protein. CONCLUSION: HLD does have a better therapeutic effect on ALI, and its molecular mechanism is better elucidated from the whole, which is to balance lipid metabolism, energy metabolism and amino acid metabolism, and inhibit NLRP3 inflammasome activation by regulating the sphingolipid pathway. Therefore, HLD and its active components can be used to develop new therapies for ALI and provide a new model for exploring complex TCM systems for treating ALI.


Subject(s)
Acute Lung Injury , Berberine , Acid Ceramidase/pharmacology , Acid Ceramidase/therapeutic use , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Amino Acids , Animals , Berberine/pharmacology , Drugs, Chinese Herbal , Eosine Yellowish-(YS)/adverse effects , Hematoxylin/pharmacology , Hematoxylin/therapeutic use , Inflammasomes , Interleukin-6/pharmacology , Lipopolysaccharides/pharmacology , Lung , NLR Family, Pyrin Domain-Containing 3 Protein , Rats , Sphingolipids/adverse effects , Tumor Necrosis Factor-alpha/pharmacology
6.
Front Aging Neurosci ; 14: 934844, 2022.
Article in English | MEDLINE | ID: mdl-35959298

ABSTRACT

Background: The application of wearable sensor technology in an exercise intervention provides a new method for the standardization and accuracy of intervention. Considering that the deterioration of musculoskeletal conditions is of serious concern in patients with neurodegenerative diseases, it is worthwhile to clarify the effect of wearable sensor-based exercise on musculoskeletal disorders in such patients compared with traditional exercise. Methods: Five health science-related databases, including PubMed, Cochrane Library, Embase, Web of Science, and Ebsco Cumulative Index to Nursing and Allied Health, were systematically searched. The protocol number of the study is PROSPERO CRD42022319763. Randomized controlled trials (RCTs) that were published up to March 2022 and written in English were included. Balance was the primary outcome measure, comprising questionnaires on postural stability and computerized dynamic posturography. The secondary outcome measures are motor symptoms, mobility ability, functional gait abilities, fall-associated self-efficacy, and adverse events. Stata version 16.0 was used for statistical analysis, and the weighted mean difference (WMD) was selected as the effect size with a 95% confidence interval (CI). Results: Fifteen RCTs involving 488 participants with mean ages ranging from 58.6 to 81.6 years were included in this review, with 14 of them being pooled in a quantitative meta-analysis. Only five included studies showed a low risk of bias. The Berg balance scale (BBS) was used in nine studies, and the pooled data showed a significant improvement in the wearable sensor-based exercise group compared with the traditional exercise group after 3-12-week intervention (WMD = 1.43; 95% CI, 0.50 to 2.36, P = 0.003). A significant change in visual score was found both post-assessment and at 1-month follow-up assessment (WMD = 4.38; 95% CI, 1.69 to 7.07, P = 0.001; I2 = 0.0%). However, no significant differences were found between the two groups in the secondary outcome measures (all p > 0.05). No major adverse events were reported. Conclusion: The wearable sensor-based exercise had advantages in improving balance in patients with neurodegenerative diseases, while there was a lack of evidence in motor symptoms, mobility, and functional gait ability enhancement. Future studies are recommended to construct a comprehensive rehabilitation treatment system for the improvement in both postural control and quality of life. Systematic Review Registration: http://www.crd.york.ac.uk/prospero/, identifier CRD42022319763.

SELECTION OF CITATIONS
SEARCH DETAIL
...