Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; : 133622, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38969034

ABSTRACT

Myocardial infarction (MI) is a serious cardiovascular disease with complex complications and high lethality. Currently, exosome (Exo) therapy has emerged as a promising treatment of ischemic MI due to its antioxidant, anti-inflammatory, and vascular abilities. However, traditional Exo delivery lacks spatiotemporal precision and targeting of microenvironment modulation, making it difficult to localize the lesion site for sustained effects. In this study, an injectable oxidized hyaluronic acid-polylysine (OHA-PL) hydrogel was developed to conveniently load adipose-derived mesenchymal stem cell exosomes (ADSC-Exos) and improve their retention under physiological conditions. The OHA-PL@Exo hydrogel with high spatiotemporal precision is transplanted minimally invasively into the ischemic myocardium to scavenge intracellular and extracellular reactive oxygen species, regulate macrophage polarization, and attenuate inflammation in the early phase of MI. In addition, this synergistic microenvironment modulation can effectively reduce myocardial fibrosis and ventricular remodeling, promote angiogenesis, and restore electrophysiological function in the late stage of MI. Therefore, this hyaluronic acid-polylysine to deliver exosomes has become a promising therapeutic strategy for myocardial repair.

2.
ACS Appl Mater Interfaces ; 16(14): 17323-17338, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38556990

ABSTRACT

Electroactive hydrogels have garnered extensive interest as a promising approach to myocardial tissue engineering. However, the challenges of spatiotemporal-specific modulation of individual pathological processes and achieving nontoxic bioresorption still remain. Herein, inspired by the entire postinfarct pathological processes, an injectable conductive bioresorbable black phosphorus nanosheets (BPNSs)-loaded hydrogel (BHGD) was developed via reactive oxide species (ROS)-sensitive disulfide-bridge and photomediated cross-linking reaction. Significantly, the chronologically programmed BHGD hydrogel can achieve graded modulation during the inflammatory, proliferative, and maturation phases of myocardial infarction (MI). More details, during early infarction, the BHGD hydrogel can effectively reduce ROS levels in the MI area, inhibit cellular oxidative stress damage, and promote macrophage M2 polarization, creating a favorable environment for damaged myocardium repair. Meanwhile, the ROS-responsive structure can protect BPNSs from degradation and maintain good conductivity under MI microenvironments. Therefore, the BHGD hydrogel possesses tissue-matched modulus and conductivity in the MI area, facilitating cardiomyocyte maturation and electrical signal exchange, compensating for impaired electrical signaling, and promoting vascularization in infarcted areas in the maturation phase. More importantly, all components of the hydrogel degrade into nontoxic substances without adverse effects on vital organs. Overall, the presented BPNS-loaded hydrogel offers an expandable and safe option for clinical treatment of MI.


Subject(s)
Hydrogels , Myocardial Infarction , Humans , Hydrogels/chemistry , Reactive Oxygen Species , Myocardial Infarction/therapy , Myocardium/pathology , Myocytes, Cardiac/metabolism
3.
Bioengineering (Basel) ; 10(11)2023 Oct 29.
Article in English | MEDLINE | ID: mdl-38002385

ABSTRACT

Directed differentiation of stem cells is an attractive approach to generate kidney tissue for regenerative therapies. Currently, the most informative platform to test the regenerative potential of this tissue is engraftment into kidneys of immunocompromised rodents. Stem cell-derived kidney tissue is vascularized following engraftment, but the connection between epithelial tubules that is critical for urine to pass from the graft to the host collecting system has not yet been demonstrated. We show that one significant obstacle to tubule fusion is the accumulation of fibrillar collagens at the interface between the graft and the host. As a screening strategy to identify factors that can prevent this collagen accumulation, we propose encapsulating laboratory-grown kidney tissue in fibrin hydrogels supplemented with candidate compounds such as recombinant proteins, small molecules, feeder cells, and gene therapy vectors to condition the local graft environment. We demonstrate that the AAV-DJ serotype is an efficient gene therapy vector for the subcapsular region and that it is specific for interstitial cells in this compartment. In addition to the histological evaluation of epithelial tubule fusion, we demonstrate the specificity of two urine biomarker assays that can be used to detect human-specific markers of the proximal nephron (CD59) and the distal nephron (uromodulin), and we demonstrate the deposition of human graft-derived urine into the mouse collecting system. Using the testing platform described in this report, it will be possible to systematically screen factors for their potential to promote epithelial fusion of graft and host tissue with a functional intravital read-out.

4.
Nat Commun ; 14(1): 6226, 2023 10 06.
Article in English | MEDLINE | ID: mdl-37803005

ABSTRACT

With advances in tissue engineering and bioelectronics, flexible electronic hydrogels that allow conformal tissue integration, online precision diagnosis, and simultaneous tissue regeneration are expected to be the next-generation platform for the treatment of myocardial infarction. Here, we report a functionalized polyaniline-based chronological adhesive hydrogel patch (CAHP) that achieves spatiotemporally selective and conformal embedded integration with a moist and dynamic epicardium surface. Significantly, CAHP has high adhesion toughness, rapid self-healing ability, and enhanced electrochemical performance, facilitating sensitive sensing of cardiac mechanophysiology-mediated microdeformations and simultaneous improvement of myocardial fibrosis-induced electrophysiology. As a result, the flexible CAHP platform monitors diastolic-systolic amplitude and rhythm in the infarcted myocardium online while effectively inhibiting ventricular remodeling, promoting vascular regeneration, and improving electrophysiological function through electrocoupling therapy. Therefore, this diagnostic and therapeutic integration provides a promising monitorable treatment protocol for cardiac disease.


Subject(s)
Adhesives , Myocardial Infarction , Humans , Adhesives/pharmacology , Heart , Myocardium , Myocardial Infarction/therapy , Ventricular Remodeling , Hydrogels/therapeutic use , Hydrogels/pharmacology
5.
Adv Healthc Mater ; 12(7): e2202309, 2023 03.
Article in English | MEDLINE | ID: mdl-36447378

ABSTRACT

Stem cell therapy integrated with hydrogels has shown promising potential in wound healing. However, the existing hydrogels usually cannot reach the desired therapeutic efficacy for burn wounds due to the inadaptability to wound shape and weak anti-infection ability. Moreover, it is difficult to improve the environment for the survival and function of stem cells under complicated wound microenvironments. In this study, an injectable and self-healing hydrogel (DSC), comprising sulfobetaine-derived dextran and carboxymethyl chitosan, is fabricated through a Schiff-base reaction. Meanwhile, the DSC hydrogel shows high nonfouling properties, including resistance to bacteria and nonspecific proteins; moreover, the prepared hydrogel can provide a biomimetic microenvironment for cell proliferation whilst maintaining the stemness of adipose-derived stem cells (ADSCs) regardless of complex microenvironments. In burnt murine animal models, the ADSCs-laden hydrogel can significantly accelerate wound healing rate and scarless skin tissue regeneration through multiple pathways. Specifically, the ADSCs-laden DSC hydrogel can avoid immune system recognition and activation and thus reduce the inflammatory response. Moreover, the ADSCs-laden DSC hydrogel can promote collagen deposition, angiogenesis, and enhance macrophage M2 polarization in the wound area. In summary, sulfobetaine-derived polysaccharide hydrogel can serve as a versatile platform for stem cell delivery to promote burn wound healing.


Subject(s)
Burns , Chitosan , Stem Cells , Animals , Mice , Bandages , Burns/drug therapy , Hydrogels/pharmacology , Hydrogels/metabolism , Stem Cells/cytology , Wound Healing
6.
ACS Nano ; 16(10): 16234-16248, 2022 10 25.
Article in English | MEDLINE | ID: mdl-36190461

ABSTRACT

Although hydrogel-based patches have shown promising therapeutic efficacy in myocardial infarction (MI), synergistic mechanical, electrical, and biological cues are required to restore cardiac electrical conduction and diastolic-systolic function. Here, an injectable mechanical-electrical coupling hydrogel patch (MEHP) is developed via dynamic covalent/noncovalent cross-linking, appropriate for cell encapsulation and minimally invasive implantation into the pericardial cavity. Pericardial fixation and hydrogel self-adhesiveness properties enable the MEHP to highly compliant interfacial coupling with cyclically deformed myocardium. The self-adaptive MEHP inhibits ventricular dilation while assisting cardiac pulsatile function. The MEHP with the electrical conductivity and sensitivity to match myocardial tissue improves electrical connectivity between healthy and infarcted areas and increases electrical conduction velocity and synchronization. Overall, the MEHP combined with cell therapy effectively prevents ventricular fibrosis and remodeling, promotes neovascularization, and restores electrical propagation and synchronized pulsation, facilitating the clinical translation of cardiac tissue engineering.


Subject(s)
Hydrogels , Myocardial Infarction , Humans , Hydrogels/pharmacology , Hydrogels/therapeutic use , Myocardium , Myocardial Infarction/drug therapy , Electric Conductivity , Hydrogel, Polyethylene Glycol Dimethacrylate/pharmacology
7.
Acta Biomater ; 151: 163-173, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35944810

ABSTRACT

Postoperative peritoneal adhesion is a common complication after surgery with high morbidity. In addition to improving surgical operations, medical therapy and physical barriers are the two main ways to prevent postoperative peritoneal adhesion. Satisfactory efficacy is not often obtained by the single antiadhesion method, and the combination of barrier therapy and antiadhesion drugs has attracted more attention. In this study, we first demonstrated that aberrant complement activation was associated with peritoneal injury and inflammatory responses. Correspondingly, blocking the C5a-C5aR axis reaction effectively reduced inflammatory reactions. Therefore, we creatively developed an integrated treatment of xyloglucan derivative (mXG) hydrogel and intravenous anti-C5a receptor antibody (anti-C5aRab) aimed at peritoneal adhesion, and then systematically evaluated the therapeutic efficacy using a sidewall defect-cecum abrasion model in mice. In vitro and in vivo experiments showed that the mXG hydrogel had good biocompatibility and degradability and could serve as a safe anti-adhesion barrier. The results showed that anti-C5aRab treatment could significantly inhibit peritoneal adhesions by reducing neutrophil infiltration and the expression of phosphorylated Smad2. Taken together, the mXG hydrogel integrated with anti-C5aRab showed superior antiadhesion performance and holds promising clinical applications in preventing peritoneal adhesion. STATEMENT OF SIGNIFICANCE: Postoperative peritoneal adhesion is an urgent problem to be solved after surgery. Previously, a biodegradable and thermoreversible xyloglucan derivative (mXG) hydrogel was developed that effectively prevented postoperative peritoneal adhesions, but obvious inflammatory responses and proliferation could still be observed. In addition, aberrant complement activation is associated with a variety of inflammatory diseases. We demonstrated that aberrant complement activation is involved in peritoneal adhesion. In this work, mXG hydrogel and intravenous anti-C5a receptor antibody (anti-C5aRab) were integrated to address peritoneal adhesions. The anti-C5aRab reduced the inflammatory responses. In addition, the mXG hydrogel was easy to use and effectively isolated the wound surface at the local injury site. Overall, this integrated treatment significantly improved the antiadhesion effect.


Subject(s)
Hydrogels , Receptor, Anaphylatoxin C5a , Animals , Glucans/pharmacology , Hydrogels/pharmacology , Mice , Tissue Adhesions/prevention & control , Xylans/pharmacology , Xylans/therapeutic use
8.
Future Med Chem ; 12(13): 1239-1251, 2020 07.
Article in English | MEDLINE | ID: mdl-32351127

ABSTRACT

Background: Complete regeneration after skin injury remains a critical clinical challenge. Hydrogels, modified with growth factors or mimicking peptides, have been applied for functional tissue regeneration by increasing the bioactivity of engineered matrices. Methodology & results: We synthesized an injectable biological hydrogel, C domain of IGF-1 (IGF-1C)-modified chitosan (CS-IGF-1C) hydrogel. Mouse model of cutaneous wound healing was established to investigate whether this hydrogel could promote wound healing. Our results demonstrated that CS-IGF-1C hydrogel exhibited superior proangiogenic effects, resulting in accelerated wound closure and improved extracellular matrix remodeling. Bioluminescence imaging and histology analysis confirmed the proangiogenic role of CS-IGF-1C hydrogel. Conclusion: CS-IGF-1C hydrogel could accelerate cutaneous wound healing by stimulating angiogenesis.


Subject(s)
Chitosan/pharmacology , Hydrogels/pharmacology , Insulin-Like Growth Factor I/pharmacology , Neovascularization, Pathologic/drug therapy , Wound Healing/drug effects , Animals , Carbohydrate Conformation , Cell Proliferation/drug effects , Cells, Cultured , Chitosan/chemistry , Disease Models, Animal , Human Umbilical Vein Endothelial Cells/drug effects , Humans , Hydrogels/chemical synthesis , Hydrogels/chemistry , Insulin-Like Growth Factor I/chemistry , Mice , Mice, Transgenic , Neovascularization, Pathologic/pathology
9.
Stem Cell Res Ther ; 11(1): 189, 2020 05 20.
Article in English | MEDLINE | ID: mdl-32434578

ABSTRACT

An amendment to this paper has been published and can be accessed via the original article.

10.
Stem Cell Res Ther ; 11(1): 136, 2020 03 26.
Article in English | MEDLINE | ID: mdl-32216819

ABSTRACT

BACKGROUND: Due to the low survival rate of cell transplantation, stem cell has not been widely used in clinical treatment of acute myocardial infarction (AMI). In this study, we immobilized the C domain peptide of insulin-like growth factor-1 on chitosan (CS-IGF-1C) to obtain bioactive hydrogel. The purpose was to investigate whether CS-IGF-1C hydrogel incorporated with human placenta-derived mesenchymal stem cells (hP-MSCs) can boost the survival of hP-MSCs and enhance their therapeutic effects. METHODS: hP-MSCs, which continuously expressed green fluorescent protein (GFP) and firefly luciferase (Fluc), were transplanted with CS-IGF-1C hydrogel into a mouse myocardial infarction model. Cell survival was detected by bioluminescence imaging (BLI), and cardiac function was measured by echocardiogram. Real-time PCR and histological analysis were used to explore the therapeutic mechanism of CS-IGF-1C hydrogel. RESULTS: CS-IGF-1C hydrogel could induce the proliferation of hP-MSCs and exert anti-apoptotic effects in vitro. The Calcine-AM/PI staining results showed that hP-MSCs seeded on CS-IGF-1C hydrogel could protect neonatal mouse ventricular cardiomyocytes (NMVCs) against oxidative stress. It was observed by BLI that CS-IGF-1C hydrogel injected into ischemic myocardium could improve the survival rate of hP-MSCs. Histology analysis indicated that co-transplantation of the CS-IGF-1C hydrogel and hP-MSCs could increase angiogenesis, reduce collagen deposition, ameliorate left ventricular expanded, and further promote the recovery of cardiac function. Besides, we found that the inflammatory response was inhibited and the expression of apoptosis-related genes was downregulated by CS-IGF-1C hydrogel. CONCLUSIONS: CS-IGF-1C hydrogel provides a conducive microenvironment for cells and significantly boosts the survival of hP-MSCs in mouse myocardial infarction model, which suggest that it may be a potential candidate for prolonging the therapeutic effect of hP-MSCs during AMI.


Subject(s)
Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Myocardial Infarction , Animals , Hydrogels , Mice , Myocardial Infarction/therapy
11.
Stem Cell Res Ther ; 10(1): 129, 2019 04 29.
Article in English | MEDLINE | ID: mdl-31036073

ABSTRACT

BACKGROUND: Poor cell engraftment and survival after transplantation limited the application of stem cell therapy. Synthetic biomaterials could provide an artificial microenvironment for stem cells, thereby improve cell survival and enhance the therapeutic efficiency of stem cells. METHODS: We synthesized a hydrogel by conjugating C domain peptide of insulin-like growth factor-1 (IGF-1C) onto chitosan (CS-IGF-1C hydrogel). Human placenta-derived mesenchymal stem cells (hP-MSCs), which constitutively express a red fluorescent protein (RFP) and renilla luciferase (Rluc), were co-transplanted with CS-IGF-1C hydrogel into a murine hindlimb ischemia model. Transgenic mice expressing firefly luciferase (Fluc) under the promoter of vascular endothelial growth factor receptor 2 (VEGFR2-Luc) were used. Dual bioluminescence imaging (BLI) was applied for tracking the survival of hP-MSCs by Rluc imaging and the VEGFR2 signal pathway activation by Fluc imaging. To investigate the therapeutic mechanism of CS-IGF-1C hydrogel, angiographic, real-time PCR, and histological analysis were carried out. RESULTS: CS-IGF-1C hydrogel could improve hP-MSCs survival as well as promote angiogenesis as confirmed by dual BLI. These results were consistent with accelerated skeletal muscle structural and functional recovery. Histology analysis confirmed that CS-IGF-1C hydrogel robustly prevented fibrosis as shown by reduced collagen deposition, along with increased angiogenesis. In addition, the protective effects of CS-IGF-1C hydrogel, such as inhibiting H2O2-induced apoptosis and reducing inflammatory responses, were proved by in vitro experiments. CONCLUSIONS: Taken together, IGF-1Cs provides a conducive niche for hP-MSCs to exert pro-mitogenic, anti-apoptotic, and pro-angiogenic effects, as well as to inhibit fibrosis. Thus, the incorporation of functional peptide into bioscaffolds represents a safe and feasible approach to augment the therapeutic efficacy of stem cells.


Subject(s)
Hydrogels/pharmacology , Insulin-Like Growth Factor I/genetics , Ischemia/therapy , Mesenchymal Stem Cell Transplantation , Animals , Apoptosis/drug effects , Cell Survival/drug effects , Chitosan/chemistry , Chitosan/pharmacology , Female , Hindlimb/drug effects , Hindlimb/pathology , Humans , Hydrogels/chemical synthesis , Hydrogels/chemistry , Hydrogen Peroxide/pharmacology , Insulin-Like Growth Factor I/chemistry , Insulin-Like Growth Factor I/pharmacology , Ischemia/pathology , Mesenchymal Stem Cells/cytology , Mice , Mice, Transgenic , Neovascularization, Physiologic/drug effects , Neovascularization, Physiologic/genetics , Placenta/cytology , Pregnancy
12.
ACS Nano ; 13(3): 3522-3533, 2019 03 26.
Article in English | MEDLINE | ID: mdl-30844245

ABSTRACT

Extracellular vesicles (EVs) attract much attention in liver pathology because they regulate cell-cell communication and many pathophysiological events by transferring their cargos. Monitoring and understanding the in vivo fate and therapeutic capacity of these EVs is critical for the development and optimization of EV-based diagnosis and therapy. Herein, we demonstrate the use of an aggregation-induced emission luminogen, DPA-SCP, for the real-time tracking of EVs derived from human placenta-derived mesenchymal stem cells (MSCs) and their therapeutic effects in a mouse acute liver injury (ALI) model. In vitro, DPA-SCP does not alter the inherent characteristics of MSC-derived EVs and shows extremely low toxicity. Moreover, DPA-SCP exhibited superior labeling efficiency and tracking capability to the most popular commercial EV trackers, PKH26 and DiI. In vivo, DPA-SCP precisely and quantitatively tracked the behaviors of EVs for 7 days in the mouse ALI model without influencing their regenerative capacity and therapeutic efficacy. The therapeutic effects of EVs may attribute to their ability for reducing inflammatory cell infiltration, enhancing cell survival and antiapoptotic effects. In conclusion, DPA-SCP with an AIE signature serves as a favorable and safe tracker for in vivo real-time imaging of EVs in liver regeneration.


Subject(s)
Biocompatible Materials/chemistry , Extracellular Vesicles/chemistry , Fluorescent Dyes/chemistry , Liver Regeneration , Optical Imaging , Animals , Biocompatible Materials/administration & dosage , Cells, Cultured , Extracellular Vesicles/transplantation , Female , Fluorescent Dyes/administration & dosage , Human Umbilical Vein Endothelial Cells/cytology , Humans , Mesenchymal Stem Cells/cytology , Mice , Mice, Inbred Strains , Molecular Structure , Particle Size , Surface Properties , Time Factors
13.
Acta Biomater ; 85: 94-105, 2019 02.
Article in English | MEDLINE | ID: mdl-30550934

ABSTRACT

Mesenchymal stem cell (MSC) transplantation has emerged as a very promising strategy for the treatments of peripheral artery disease (PAD). However, MSC-based therapies are limited by low cell retention and survival rate in the ischemic zone. Small molecular (SM) hydrogels have shown attractive abilities to enhance the therapeutic effects of human MSCs via promoting their proliferation or maintaining their differentiation potential. Here, we designed and synthesized a new bioactive and biocompatible hydrogel, Nap-GFFYK-Thiol, using disulfide bonds as cleavable linkers to control the molecular self-assembly and we hypothesized this hydrogel could enhance the retention and engraftment of human placenta-derived MSCs (hP-MSCs) in a mouse ischemic hindlimb model. In vitro results demonstrated that the Nap-GFFYK-Thiol hydrogel increased cell viability through paracrine effects. Moreover, it enhanced the proangiogenic and anti-apoptotic effects of hP-MSCs. In vivo, Nap-GFFYK-Thiol hydrogel improved the hP-MSC retention in the murine ischemic hindlimb model as visualized by bioluminescence imaging. Furthermore, cotransplantation of hP-MSCs with hydrogel improved blood perfusion, leading to superior limb salvage. These therapeutic effects may attribute to reduced inflammatory cell infiltration, enhanced angiogenesis as well as suppressed collagen deposition. In conclusion, the Nap-GFFYK-Thiol hydrogel fabricated using disulfide bonds as cleavable linkers serves as an artificial niche for promoting hP-MSC survival and proangiogenic factor secretion in PAD therapy and thereby provide an alternative strategy for PAD therapy. STATEMENT OF SIGNIFICANCE: Although several phase I/II clinical trials of MSC-based treatments for critical limb ischemia (CLI) are ongoing, MSC-based therapies are still challenged by the low quality and quantity of cells in the ischemic zone, especially in cases of extensive or irreversible damage. Hydrogels have favorable biocompatibility and safety records in the medical field. In the current study, we engineered a new bioactive and biocompatible hydrogel, Nap-GFFYK-Thiol, using disulfide bonds as cleavable linkers to enhance the therapeutic efficacy of human placenta-derived MSCs (hP-MSCs) in mouse limb ischemia model. Notably, Nap-GFFYK-Thiol hydrogel acts as an artificial niche for promoting hP-MSC survival and proangiogenic factor secretion in PAD therapy, which further promoted the restoration of blood perfusion and regeneration of muscle cells. Considering the proangiogenic effect of Nap-GFFYK-Thiol on hP-MSCs, our results may provide a new strategy for the treatment of PAD.


Subject(s)
Hindlimb/blood supply , Hydrogels/pharmacology , Ischemia/therapy , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/cytology , Peptides/pharmacology , Animals , Cytoprotection/drug effects , Disease Models, Animal , Female , Genes, Reporter , Hindlimb/pathology , Human Umbilical Vein Endothelial Cells/drug effects , Humans , Hydrogels/chemical synthesis , Hydrogels/chemistry , Inflammation/pathology , Ischemia/pathology , Mesenchymal Stem Cells/drug effects , Mice, Inbred BALB C , Mice, Nude , Neovascularization, Physiologic/drug effects , Paracrine Communication/drug effects , Peptides/chemical synthesis , Peptides/chemistry , Phenotype , Placenta/cytology , Pregnancy , Sulfhydryl Compounds/chemistry , Treatment Outcome
14.
Cell Physiol Biochem ; 42(1): 407-415, 2017.
Article in English | MEDLINE | ID: mdl-28558368

ABSTRACT

BACKGROUND: Tumor derived vascular endothelial growth factor (VEGF) can stimulate proliferation and migration of endothelial cells and recruit endothelial progenitor cells into tumors for vascular formation via a paracrine manner. Now increasing evidence suggests that VEGF also serves as an autocrine factor promoting cell survival and tumor angiogenesis. Real time visualization of VEGF activity in the early stages of tumor formation using molecular imaging will provide unprecedented insight into the biological processes of cancer. METHODS: The mouse breast cancer cell line 4T1 was transfected with an inducible, bidirectional tetracycline (Bi-Tet) promoter driving VEGF and renilla luciferase (Rluc). This was used to quantitatively image conditional switching of VEGF by bioluminescence imaging (BLI) under the control of systemic administration of doxycycline. Simultaneously, 4T1 cells were labelled with the double fusion reporter gene (Fluc-eGFP) to establish a breast cancer model. RESULTS: We found that inducible VEGF could promote proliferation and attenuate apoptosis due to oxidative stress in an autocrine manner in vitro. In vivo studies revealed that induction of VEGF expression during early tumor development not only dramatically enhanced tumor growth but also increased tumor angiogenesis as visualized by BLI. Finally, immunohistochemistry staining confirmed that inducing VEGF expression promoted cell survival and tumor neovascularization. CONCLUSION: Together the inducible bidirectional tetracycline (Bi-Tet) co-expression system combined with the dual bioluminescence imaging (BLI) system provides a platform to investigate a target gene's role in the pathologic process of cancer and facilitates noninvasive monitoring of biological responses in real time.


Subject(s)
Breast Neoplasms/diagnosis , Vascular Endothelial Growth Factor A/metabolism , Animals , Apoptosis/drug effects , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Disease Models, Animal , Disease Progression , Doxycycline/toxicity , Female , Gene Expression Regulation, Neoplastic , Genes, Reporter , Humans , Hydrogen Peroxide/toxicity , Mice , Mice, Inbred BALB C , Microscopy, Fluorescence , Neovascularization, Pathologic/prevention & control , Optical Imaging , Oxidative Stress/drug effects , Vascular Endothelial Growth Factor A/genetics
15.
Biomed Res Int ; 2016: 1068528, 2016.
Article in English | MEDLINE | ID: mdl-27110557

ABSTRACT

Hyperoside, an active compound found in plants of the genera Hypericum and Crataegus, is reported to exhibit antioxidant, anticancer, and anti-inflammatory activities. Induction of hepatic stellate cell (HSC) apoptosis is recognized as a promising strategy for attenuation of hepatic fibrosis. In this study, we investigated whether hyperoside treatment can exert antifibrotic effects in human LX-2 hepatic stellate cells. We found that hyperoside induced apoptosis in LX-2 cells and decreased levels of α-smooth muscle actin (α-SMA), type I collagen, and intracellular reactive oxygen species (ROS). Remarkably, hyperoside also inhibited the DNA-binding activity of the transcription factor NF-κB and altered expression levels of NF-κB-regulated genes related to apoptosis, including proapoptotic genes Bcl-Xs, DR4, Fas, and FasL and anti-apoptotic genes A20, c-IAP1, Bcl-X L , and RIP1. Our results suggest that hyperoside may have potential as a therapeutic agent for the treatment of liver fibrosis.


Subject(s)
Flavonoids/administration & dosage , Genetic Diseases, Inborn/diet therapy , Hepatic Stellate Cells/drug effects , Liver Cirrhosis/diet therapy , Quercetin/analogs & derivatives , Apoptosis/drug effects , Cell Line , Dietary Supplements , Genetic Diseases, Inborn/metabolism , Genetic Diseases, Inborn/pathology , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Humans , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , NF-kappa B/metabolism , Quercetin/administration & dosage , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects
16.
Curr Radiopharm ; 5(4): 329-35, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22724422

ABSTRACT

High-specific activity radiolabeled melanocortin peptide preparations are necessary for optimal melanoma imaging due to the relatively low number of melanocortin-1 receptors (MC1-Rs) per tumor cell. In this study, a one-step synthesis of 62Cu-labeled MC1-R targeting peptide Re(Arg11)CCMSH was developed, which yielded high specific activity radiolabeled peptide preparations that required no post-labeling purification. DOTA and NOTA conjugated Re(Arg11)CCMSH peptides were synthesized and examined for 62Cu radiolabeling and cell binding properties. Biodistribution and PET imaging studies were performed to assess the in vivo tumor targeting and imaging characteristics of the optimal radiolabeled peptide. Melanoma cell binding affinities for NOTA-, NOTA-GGG-, and NOTA-GSG- conjugated Re(Arg11)CCMSH were determined to be 1.3×10-9 M, 1.9×10-9 M and 6.0×10-9 M. The 62Cu radiolabeling efficiencies of DOTA- and NOTA- conjugated Re(Arg11)CCMSH analogs were 30% and > 98% after 2 min at 24° C, while 0.5 µg of NOTA-GGG-peptide could be labeled to > 95% with a maximum specific activity of 138 Ci/µmol. Tumor uptake of 62Cu- NOTA-GGG-Re(Arg11)CCMSH in B16/F1 melanoma bearing mice was 4.65±0.48% ID/g and 9.43±2.69% ID/g at 20 and 40 min post injection and was visualized by PET imaging. High specific activity 62Cu-NOTA-GGG-Re(Arg11)CCMSH was prepared in a one-step procedure at 24°C in 6 min. 62Cu-NOTA-GGG-Re(Arg11)CCMSH exhibited MC1-R selective binding and rapid tumor uptake in B16/F1 melanoma bearing mice that was confirmed by PET imaging studies. High specific activity 62Cu from a 62Zn/62Cu generator coupled with simple one step radiolabeling procedures makes 62Cu an attractive radionuclide for PET imaging of low-density receptor targets.


Subject(s)
Copper Radioisotopes , Melanoma/diagnostic imaging , Peptide Fragments , Receptor, Melanocortin, Type 1/radiation effects , Animals , Copper Radioisotopes/chemistry , Copper Radioisotopes/pharmacokinetics , Female , Half-Life , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/pharmacokinetics , Heterocyclic Compounds, 1-Ring , Inhibitory Concentration 50 , Melanoma/metabolism , Mice , Mice, Inbred C57BL , Peptide Fragments/chemical synthesis , Peptide Fragments/pharmacokinetics , Positron-Emission Tomography/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...